Weekly Open to Close Percentage ChangeThe "Weekly Open to Close Percentage Change Indicator" is a powerful tool designed to help traders and investors track the percentage change in price from the open of the current week's candle to its close. This indicator provides a clear visualization of how the price has moved within the week, offering valuable insights into weekly market trends and momentum.
Key Features:
Weekly Analysis: Focuses on weekly time frames, making it ideal for swing traders and long-term investors.
Percentage Change Calculation: Accurately calculates the percentage change from the open price of the current week's candle to the close price.
Color-Coded Visualization: Uses color coding to differentiate between positive and negative changes:
Green for positive percentage changes (price increase).
Red for negative percentage changes (price decrease).
Histogram Display: Plots the percentage change as a histogram for easy visual interpretation.
Background Highlighting: Adds a background color with transparency to highlight the nature of the change, enhancing chart readability.
Optional Labels: Includes an option to display percentage change values as small dots at the top for quick reference.
How to Use:
Add the script to your TradingView chart by opening the Pine Editor, pasting the script, and saving it.
Apply the indicator to your chart. It will automatically calculate and display the weekly percentage change.
Use the color-coded histogram and background to quickly assess weekly price movements and make informed trading decisions.
Use Cases:
Trend Identification: Quickly identify whether the market is trending upwards or downwards on a weekly basis.
Market Sentiment: Gauge the market sentiment by observing the weekly price changes.
Swing Trading: Ideal for swing traders who base their strategies on weekly price movements.
Note: This indicator is designed for educational and informational purposes. Always conduct thorough analysis and consider multiple indicators and factors when making trading decisions.
Pesquisar nos scripts por "swing trading"
Adaptive Moving Average (AMA) Signals (Zeiierman)█  Overview 
The  Adaptive Moving Average (AMA)  Signals indicator, enhances the classic concept of moving averages by making them adaptive to the market's volatility. This adaptability makes the AMA particularly useful in identifying market trends with varying degrees of volatility.
The core of the AMA's adaptability lies in its Efficiency Ratio (ER), which measures the directionality of the market over a given period. The ER is calculated by dividing the absolute change in price over a period by the sum of the absolute differences in daily prices over the same period.
  
⚪  Why It's Useful 
The AMA Signals indicator is particularly useful because of its adaptability to changing market conditions. Unlike static moving averages, it dynamically adjusts, providing more relevant signals that can help traders capture trends earlier or identify reversals with greater accuracy. Its configurability makes it suitable for various trading strategies and timeframes, from day trading to swing trading.
█  How It Works 
The AMA Signals indicator operates on the principle of adapting to market efficiency through the calculation of the Efficiency Ratio (ER), which measures the directionality of the market over a specified period. By comparing the net price change to total price movements, the AMA adjusts its sensitivity, becoming faster during trending markets and slower during sideways markets. This adaptability is enhanced by a gamma parameter that filters signals for either trend continuation or reversal, making it versatile across different market conditions.
 
change     = math.abs(close - close )
volatility = math.sum(math.abs(close - close ), n)
ER         = change / volatility 
 
 Efficiency Ratio (ER) Calculation:  The AMA begins with the computation of the Efficiency Ratio (ER), which measures the market's directionality over a specified period. The ER is a ratio of the net price change to the total price movements, serving as a measure of the efficiency of price movements.
 Adaptive Smoothing:  Based on the ER, the indicator calculates the smoothing constants for the fastest and slowest Exponential Moving Averages (EMAs). These constants are then used to compute a Scaled Smoothing Coefficient (SC) that adapts the moving average to the market's efficiency, making it faster during trending periods and slower in sideways markets.
 Signal Generation:  The AMA applies a filter, adjusted by a "gamma" parameter, to identify trading signals. This gamma influences the sensitivity towards trend or reversal signals, with options to adjust for focusing on either trend-following or counter-trend signals.
 
█  How to Use 
 Trend Identification:  Use the AMA to identify the direction of the trend. An upward moving AMA indicates a bullish trend, while a downward moving AMA suggests a bearish trend.
  
 Trend Trading:  Look for buy signals when the AMA is trending upwards and sell signals during a downward trend. Adjust the fast and slow EMA lengths to match the desired sensitivity and timeframe.
  
 Reversal Trading:  Set the gamma to a positive value to focus on reversal signals, identifying potential market turnarounds.
  
█  Settings 
 
 Period for ER calculation:  Defines the lookback period for calculating the Efficiency Ratio, affecting how quickly the AMA responds to changes in market efficiency.
 Fast EMA Length and Slow EMA Length:  Determine the responsiveness of the AMA to recent price changes, allowing traders to fine-tune the indicator to their trading style.
 Signal Gamma:  Adjusts the sensitivity of the filter applied to the AMA, with the ability to focus on trend signals or reversal signals based on its value.
 AMA Candles:  An innovative feature that plots candles based on the AMA calculation, providing visual cues about the market trend and potential reversals.
 
█  Alerts 
The AMA Signals indicator includes configurable alerts for buy and sell signals, as well as positive and negative trend changes.
-----------------
Disclaimer
The information contained in my Scripts/Indicators/Ideas/Algos/Systems does not constitute financial advice or a solicitation to buy or sell any securities of any type. I will not accept liability for any loss or damage, including without limitation any loss of profit, which may arise directly or indirectly from the use of or reliance on such information.
All investments involve risk, and the past performance of a security, industry, sector, market, financial product, trading strategy, backtest, or individual's trading does not guarantee future results or returns. Investors are fully responsible for any investment decisions they make. Such decisions should be based solely on an evaluation of their financial circumstances, investment objectives, risk tolerance, and liquidity needs.
My Scripts/Indicators/Ideas/Algos/Systems are only for educational purposes!
Candlestick Bias OscillatorCandlestick Bias Oscillator (CBO)  
The Candlestick Bias Oscillator (CBO) with Signal Line is a pioneering indicator developed for the TradingView platform, designed to offer traders a nuanced analysis of market sentiment through the unique lens of candlestick patterns. This indicator stands out by merging traditional concepts of price action analysis with innovative mathematical computations, providing a fresh perspective on trend detection and potential market reversals.
 Originality and Utility 
At the core of the CBO's originality is its method of calculating the bias of candlesticks. Unlike conventional oscillators that may rely solely on closing prices or high-low ranges, the CBO incorporates both the body and wick of candlesticks into its analysis. This dual consideration allows for a more rounded understanding of market sentiment, capturing both the directional momentum and the strength of price rejections within a single oscillator.
 Mathematical Foundations 
1. Body Bias: The CBO calculates the body bias by assessing the relative position of the close to the open within the day's range, scaled to a -100 to 100 range. This calculation reflects the bullish or bearish sentiment of the market, based on the day's closing momentum.
Body Bias = (Close−Open)/(High−Low) x 100
Wick Bias: Similarly, the wick bias calculation takes into account the lengths of the upper and lower wicks, indicating rejection levels beyond the body's close. The balance between these wicks is scaled similarly to the body bias, offering insight into the market's indecision or rejection of certain price levels.
Wick Bias=(Lower Wick−Upper Wick)/(Total Wick Length) × 100
   
3. Overall Bias and Oscillator: By averaging the body and wick biases, the CBO yields an overall bias score, which is then smoothed over a user-defined period to create the oscillator. This oscillator provides a clear visual representation of the market's underlying sentiment, smoothed to filter out the noise.
   
4. Signal Line: A secondary smoothing of the oscillator creates the signal line, offering a trigger for potential trading signals when the oscillator crosses this line, indicative of a change in market momentum.
 How to Use the CBO: 
The CBO is versatile, suitable for various trading strategies, including scalping, swing trading, and long-term trend following. Traders can use the oscillator and signal line crossovers as indications for entry or exit points. The relative position of the oscillator to the zero line further provides insight into the prevailing market bias, enabling traders to align their strategies with the broader market sentiment.
 Why It Adds Value: 
The CBO's innovative approach to analyzing candlestick patterns fills a gap in the existing array of TradingView indicators. By providing a detailed analysis of both candle bodies and wicks, the CBO offers a more comprehensive view of market sentiment than traditional oscillators. This can be particularly useful for traders looking to gauge the strength of price movements and potential reversal points with greater precision.
 Conclusion: 
The Candle Bias Oscillator with Signal Line is not just another addition to the plethora of indicators on TradingView. It represents a significant advancement in the analysis of market sentiment, combining traditional concepts with a novel mathematical approach. By offering a deeper insight into the dynamics of candlestick patterns, the CBO equips traders with a powerful tool to navigate the complexities of the market with increased confidence.
Explore the unique insights provided by the CBO and integrate it into your trading strategy for a more informed and nuanced market analysis.
Bollinger Bands & Fibonacci StrategyThe Bollinger Bands & Fibonacci Strategy is a powerful technical analysis trading strategy designed to identify potential entry and exit points in financial markets. This strategy combines two widely used indicators, Bollinger Bands and Fibonacci retracement levels, to assist traders in making informed trading decisions.
Key Features:
Bollinger Bands: This strategy utilizes Bollinger Bands, a volatility-based indicator that consists of an upper band, a lower band, and a middle (basis) line. Bollinger Bands help traders visualize price volatility and potential reversal points.
Fibonacci Retracement Levels: Fibonacci retracement levels are essential tools for identifying potential support and resistance levels in price charts. This strategy incorporates Fibonacci retracement levels, including the 0% and 100% levels, to aid in pinpointing key price levels.
Long and Short Signals: The strategy generates long (buy) and short (sell) signals based on specific conditions derived from Bollinger Bands and Fibonacci levels. Long signals are generated when price crosses above the upper Bollinger Band and when the price is above the Fibonacci low level. Short signals are generated when price crosses below the lower Bollinger Band and when the price is below the Fibonacci high level.
Position Management: To prevent multiple concurrent positions of the same type (long or short), the strategy employs position management logic. It tracks open positions and ensures that only one position type is active at a time.
Exit Conditions: The strategy includes customizable exit conditions to manage and close open positions. Traders can fine-tune exit criteria to align with their risk management and profit-taking strategies.
User-Friendly: This strategy script is user-friendly and can be easily integrated into the TradingView platform, allowing traders to apply it to various financial instruments and timeframes.
Usage:
Traders and investors can apply the Bollinger Bands & Fibonacci Strategy to a wide range of financial markets, including stocks, forex, commodities, and cryptocurrencies. It can be adapted to different timeframes to suit various trading styles, from day trading to swing trading.
Disclaimer:
Trading carries inherent risks, and this strategy is no exception. It is essential to use proper risk management techniques, including stop-loss orders, and thoroughly backtest the strategy on historical data before implementing it in live trading.
The Bollinger Bands & Fibonacci Strategy is a valuable tool for technical traders seeking well-defined entry and exit points based on robust indicators. It can serve as a foundation for traders to build and customize their trading strategies according to their individual preferences and risk tolerance.
Feel free to customize this description to add any additional details or specifications unique to your strategy. When publishing your strategy on a trading platform like TradingView, a clear and informative description can help potential users understand and use your strategy effectively.
W and M Pattern Indicator- SwaGThis is a TradingView indicator script that identifies potential buy and sell signals based on ‘W’ and ‘M’ patterns in the Relative Strength Index (RSI). It provides visual alerts and draws horizontal lines to indicate potential trade entry points.
User Manual:
 Inputs:  The script takes two inputs - an upper limit and a lower limit. The default values are 70 and 40, respectively.
 RSI Calculation:  The script calculates the RSI based on the closing prices of the last 14 periods.
 Pattern Identification:  It identifies ‘W’ patterns when the RSI makes a higher low within the lower limit, and ‘M’ patterns when the RSI makes a lower high within the upper limit.
 Visual Alerts:  The script plots these patterns on the chart. ‘W’ patterns are marked with small green triangles below the bars, and ‘M’ patterns are marked with small red triangles above the bars.
 Trade Entry Points:  A horizontal line is drawn at the high or low of the candle to represent potential trade entry points. The line starts from one bar to the left and extends 10 bars to the right.
 Trading Strategy: 
 
 For investing, use a weekly timeframe.
 For swing trading, use a daily timeframe.
 For intraday trading, use a 5 or 15-minute timeframe. Only consider sell-side signals for intraday trading.
 Take a buy position if the high breaks above the green line or sell if the low breaks below the red line.
 Use recent signals only and avoid signals that are too old.
 Swing highs or lows will be your stop-loss level.
 Always think about your stop-loss before entering a trade, not your target.
 Avoid trades with a large stop-loss.
 
Remember, this script is a tool to aid in your trading decisions. Always test your strategies thoroughly before live trading. Happy trading! 😊
Moving Average Filters Add-on w/ Expanded Source Types [Loxx]Moving Average Filters Add-on w/ Expanded Source Types   is a conglomeration of specialized and traditional moving averages that will be used in most of indicators that I publish moving forward. There are 39 moving averages included in this indicator as well as expanded source types including traditional Heiken Ashi and Better Heiken Ashi candles. You can read about the expanded source types  clicking here . About half of these moving averages are closed source on other trading platforms. This indicator serves as a reference point for future public/private, open/closed source indicators that I publish to TradingView. Information about these moving averages was gleaned from various forex and trading forums and platforms as well as TASC publications and other assorted research publications.
________________________________________________________________
 Included moving averages  
 ADXvma - Average Directional Volatility Moving Average 
Linnsoft's ADXvma formula is a volatility-based moving average, with the volatility being determined by the value of the ADX indicator.
The ADXvma has the SMA in Chande's CMO replaced with an EMA, it then uses a few more layers of EMA smoothing before the "Volatility Index" is calculated.
A side effect is, those additional layers slow down the ADXvma when you compare it to Chande's Variable Index Dynamic Average VIDYA.
The ADXVMA provides support during uptrends and resistance during downtrends and will stay flat for longer, but will create some of the most accurate market signals when it decides to move.
 Ahrens Moving Average 
Richard D. Ahrens's Moving Average promises "Smoother Data" that isn't influenced by the occasional price spike. It works by using the Open and the Close in his formula so that the only time the Ahrens Moving Average will change is when the candlestick is either making new highs or new lows.
 Alexander Moving Average - ALXMA 
This Moving Average uses an elaborate smoothing formula and utilizes a 7 period Moving Average. It corresponds to fitting a second-order polynomial to seven consecutive observations. This moving average is rarely used in trading but is interesting as this Moving Average has been applied to diffusion indexes that tend to be very volatile.
 Double Exponential Moving Average - DEMA 
The Double Exponential Moving Average (DEMA) combines a smoothed EMA and a single EMA to provide a low-lag indicator. It's primary purpose is to reduce the amount of "lagging entry" opportunities, and like all Moving Averages, the DEMA confirms uptrends whenever price crosses on top of it and closes above it, and confirms downtrends when the price crosses under it and closes below it - but with significantly less lag.
 Double Smoothed Exponential Moving Average - DSEMA 
The Double Smoothed Exponential Moving Average is a lot less laggy compared to a traditional EMA. It's also considered a leading indicator compared to the EMA, and is best utilized whenever smoothness and speed of reaction to market changes are required.
 Exponential Moving Average - EMA 
The EMA places more significance on recent data points and moves closer to price than the SMA (Simple Moving Average). It reacts faster to volatility due to its emphasis on recent data and is known for its ability to give greater weight to recent and more relevant data. The EMA is therefore seen as an enhancement over the SMA.
 Fast Exponential Moving Average - FEMA 
An Exponential Moving Average with a short look-back period.
 Fractal Adaptive Moving Average - FRAMA 
The Fractal Adaptive Moving Average by John Ehlers is an intelligent adaptive Moving Average which takes the importance of price changes into account and follows price closely enough to display significant moves whilst remaining flat if price ranges. The FRAMA does this by dynamically adjusting the look-back period based on the market's fractal geometry.
 Hull Moving Average - HMA 
Alan Hull's HMA makes use of weighted moving averages to prioritize recent values and greatly reduce lag whilst maintaining the smoothness of a traditional Moving Average. For this reason, it's seen as a well-suited Moving Average for identifying entry points.
 IE/2 - Early T3 by Tim Tilson 
The IE/2 is a Moving Average that uses Linear Regression slope in its calculation to help with smoothing. It's a worthy Moving Average on it's own, even though it is the precursor and very early version of the famous "T3 Indicator".
 Integral of Linear Regression Slope - ILRS 
A Moving Average where the slope of a linear regression line is simply integrated as it is fitted in a moving window of length N (natural numbers in maths) across the data. The derivative of ILRS is the linear regression slope. ILRS is not the same as a SMA (Simple Moving Average) of length N, which is actually the midpoint of the linear regression line as it moves across the data.
 Instantaneous Trendline 
The Instantaneous Trendline is created by removing the dominant cycle component from the price information which makes this Moving Average suitable for medium to long-term trading.
 Laguerre Filter 
The Laguerre Filter is a smoothing filter which is based on Laguerre polynomials. The filter requires the current price, three prior prices, a user defined factor called Alpha to fill its calculation.
Adjusting the Alpha coefficient is used to increase or decrease its lag and it's smoothness.
 Leader Exponential Moving Average 
The Leader EMA was created by Giorgos E. Siligardos who created a Moving Average which was able to eliminate lag altogether whilst maintaining some smoothness. It was first described during his research paper "MACD Leader" where he applied this to the MACD to improve its signals and remove its lagging issue. This filter uses his leading MACD's "modified EMA" and can be used as a zero lag filter.
 Linear Regression Value - LSMA (Least Squares Moving Average) 
LSMA as a Moving Average is based on plotting the end point of the linear regression line. It compares the current value to the prior value and a determination is made of a possible trend, eg. the linear regression line is pointing up or down.
 Linear Weighted Moving Average - LWMA 
LWMA reacts to price quicker than the SMA and EMA. Although it's similar to the Simple Moving Average, the difference is that a weight coefficient is multiplied to the price which means the most recent price has the highest weighting, and each prior price has progressively less weight. The weights drop in a linear fashion.
McGinley Dynamic
John McGinley created this Moving Average to track price better than traditional Moving Averages. It does this by incorporating an automatic adjustment factor into its formula, which speeds (or slows) the indicator in trending, or ranging, markets.
 McNicholl EMA 
Dennis McNicholl developed this Moving Average to use as his center line for his "Better Bollinger Bands" indicator and was successful because it responded better to volatility changes over the standard SMA and managed to avoid common whipsaws.
 Non lag moving average 
The Non Lag Moving average follows price closely and gives very quick signals as well as early signals of price change. As a standalone Moving Average, it should not be used on its own, but as an additional confluence tool for early signals.
 Parabolic Weighted Moving Average 
The Parabolic Weighted Moving Average is a variation of the Linear Weighted Moving Average. The Linear Weighted Moving Average calculates the average by assigning different weight to each element in its calculation. The Parabolic Weighted Moving Average is a variation that allows weights to be changed to form a parabolic curve. It is done simply by using the Power parameter of this indicator.
 Recursive Moving Trendline 
Dennis Meyers's Recursive Moving Trendline uses a recursive (repeated application of a rule) polynomial fit, a technique that uses a small number of past values estimations  of price and today's price to predict tomorrows price.
 Simple Moving Average - SMA 
The SMA calculates the average of a range of prices by adding recent prices and then dividing that figure by the number of time periods in the calculation average. It is the most basic Moving Average which is seen as a reliable tool for starting off with Moving Average studies. As reliable as it may be, the basic moving average will work better when it's enhanced into an EMA.
 Sine Weighted Moving Average 
The Sine Weighted Moving Average assigns the most weight at the middle of the data set. It does this by weighting from the first half of a Sine Wave Cycle and the most weighting is given to the data in the middle of that data set. The Sine WMA closely resembles the TMA (Triangular Moving Average).
 Smoothed Moving Average - SMMA 
The Smoothed Moving Average is similar to the Simple Moving Average (SMA), but aims to reduce noise rather than reduce lag. SMMA takes all prices into account and uses a long lookback period. Due to this, it's seen a an accurate yet laggy Moving Average.
 Smoother 
The Smoother filter is a faster-reacting smoothing technique which generates considerably less lag than the SMMA (Smoothed Moving Average). It gives earlier signals but can also create false signals due to its earlier reactions. This filter is sometimes wrongly mistaken for the superior Jurik Smoothing algorithm.
 Super Smoother 
The Super Smoother filter uses John Ehlers’s “Super Smoother” which consists of a a Two pole Butterworth filter combined with a 2-bar SMA (Simple Moving Average) that suppresses the 22050 Hz Nyquist frequency: A characteristic of a sampler, which converts a continuous function or signal into a discrete sequence.
 Three pole Ehlers Butterworth 
The 3 pole Ehlers Butterworth (as well as the Two pole Butterworth) are both superior alternatives to the EMA and SMA. They aim at producing less lag whilst maintaining accuracy. The 2 pole filter will give you a better approximation for price, whereas the 3 pole filter has superior smoothing.
 Three pole Ehlers smoother 
The 3 pole Ehlers smoother works almost as close to price as the above mentioned 3 Pole Ehlers Butterworth. It acts as a strong baseline for signals but removes some noise. Side by side, it hardly differs from the Three Pole Ehlers Butterworth but when examined closely, it has better overshoot reduction compared to the 3 pole Ehlers Butterworth.
 Triangular Moving Average - TMA 
The TMA is similar to the EMA but uses a different weighting scheme. Exponential and weighted Moving Averages will assign weight to the most recent price data. Simple moving averages will assign the weight equally across all the price data. With a TMA (Triangular Moving Average), it is double smoother (averaged twice) so the majority of the weight is assigned to the middle portion of the data.
The TMA and Sine Weighted Moving Average Filter are almost identical at times.
 Triple Exponential Moving Average - TEMA 
The TEMA uses multiple EMA calculations as well as subtracting lag to create a tool which can be used for scalping pullbacks. As it follows price closely, it's signals are considered very noisy and should only be used in extremely fast-paced trading conditions.
 Two pole Ehlers Butterworth 
The 2 pole Ehlers Butterworth (as well as the three pole Butterworth mentioned above) is another filter that cuts out the noise and follows the price closely. The 2 pole is seen as a faster, leading filter over the 3 pole and follows price a bit more closely. Analysts will utilize both a 2 pole and a 3 pole Butterworth on the same chart using the same period, but having both on chart allows its crosses to be traded.
 Two pole Ehlers smoother 
A smoother version of the Two pole Ehlers Butterworth. This filter is the faster version out of the 3 pole Ehlers Butterworth. It does a decent job at cutting out market noise whilst emphasizing a closer following to price over the 3 pole Ehlers.
 Volume Weighted EMA - VEMA 
Utilizing tick volume in MT4 (or real volume in MT5), this EMA will use the Volume reading in its decision to plot its moves. The more Volume it detects on a move, the more authority (confirmation) it has. And this EMA uses those Volume readings to plot its movements.
Studies show that tick volume and real volume have a very strong correlation, so using this filter in MT4 or MT5 produces very similar results and readings.
 Zero Lag DEMA - Zero Lag Double Exponential Moving Average 
John Ehlers's Zero Lag DEMA's aim is to eliminate the inherent lag associated with all trend following indicators which average a price over time. Because this is a Double Exponential Moving Average with Zero Lag, it has a tendency to overshoot and create a lot of false signals for swing trading. It can however be used for quick scalping or as a secondary indicator for confluence.
 Zero Lag Moving Average 
The Zero Lag Moving Average is described by its creator, John Ehlers, as a Moving Average with absolutely no delay. And it's for this reason that this filter will cause a lot of abrupt signals which will not be ideal for medium to long-term traders. This filter is designed to follow price as close as possible whilst de-lagging data instead of basing it on regular data. The way this is done is by attempting to remove the cumulative effect of the Moving Average.
 Zero Lag TEMA - Zero Lag Triple Exponential Moving Average 
Just like the Zero Lag DEMA, this filter will give you the fastest signals out of all the Zero Lag Moving Averages. This is useful for scalping but dangerous for medium to long-term traders, especially during market Volatility and news events. Having no lag, this filter also has no smoothing in its signals and can cause some very bizarre behavior when applied to certain indicators.
________________________________________________________________
 What are Heiken Ashi "better" candles? 
The "better formula" was proposed in an article/memo by BNP-Paribas (In Warrants & Zertifikate, No. 8, August 2004 (a monthly German magazine published by BNP Paribas, Frankfurt), there is an article by Sebastian Schmidt about further development (smoothing) of Heikin-Ashi chart.)
 They proposed to use the following: 
(Open+Close)/2+(((Close-Open)/( High-Low ))*ABS((Close-Open)/2))
instead of using :
haClose = (O+H+L+C)/4
According to that document the HA representation using their proposed formula is better than the traditional formula.
 What are traditional Heiken-Ashi candles? 
The Heikin-Ashi technique averages price data to create a Japanese candlestick chart that filters out market noise.
Heikin-Ashi charts, developed by Munehisa Homma in the 1700s, share some characteristics with standard candlestick charts but differ based on the values used to create each candle. Instead of using the open, high, low, and close like standard candlestick charts, the Heikin-Ashi technique uses a modified formula based on two-period averages. This gives the chart a smoother appearance, making it easier to spots trends and reversals, but also obscures gaps and some price data.
 Expanded generic source types: 
 
 Close = close
 Open = open
 High = high
 Low = low
 Median = hl2
 Typical = hlc3
 Weighted = hlcc4
 Average = ohlc4
 Average Median Body = (open+close)/2
 Trend Biased = (see code, too complex to explain here)
 Trend Biased (extreme) = (see code, too complex to explain here)
 
 Included: 
-Toggle bar color on/off
-Toggle signal line on/off
[blackcat] L2 Ehlers Fisherized Deviation Scaled OscillatorLevel: 2
Background
John F. Ehlers introuced Fisherized Deviation Scaled Oscillator in Oct, 2018.
Function
In “Probability—Probably A Good Thing To Know,”  John Ehlers introduces a procedure for measuring an indicator’s probability distribution to determine if it can be used as part of a reversion-to-the-mean trading strategy. Dr. Ehlers demonstrates this method with several of his existing indicators and presents a new indicator that he calls a deviation-scaled oscillator with Fisher transform. It  charts the probability density of an oscillator to evaluate its applicability to swing trading.
Key Signal
FisherFilt --> Ehlers Fisherized Deviation Scaled Oscillator fast line
Trigger --> Ehlers Fisherized Deviation Scaled Oscillator slow line
Pros and Cons
100% John F. Ehlers definition translation, even variable names are the same. This help readers who would like to use pine to read his book.
Remarks
The 91th script for Blackcat1402 John F. Ehlers Week publication.
Readme
In real life, I am a prolific inventor. I have successfully applied for more than 60 international and regional patents in the past 12 years. But in the past two years or so, I have tried to transfer my creativity to the development of trading strategies. Tradingview is the ideal platform for me. I am selecting and contributing some of the hundreds of scripts to publish in Tradingview community. Welcome everyone to interact with me to discuss these interesting pine scripts.
The scripts posted are categorized into 5 levels according to my efforts or manhours put into these works.
Level 1 : interesting script snippets or distinctive improvement from classic indicators or strategy. Level 1 scripts can usually appear in more complex indicators as a function module or element.
Level 2 : composite indicator/strategy. By selecting or combining several independent or dependent functions or sub indicators in proper way, the composite script exhibits a resonance phenomenon which can filter out noise or fake trading signal to enhance trading confidence level.
Level 3 : comprehensive indicator/strategy. They are simple trading systems based on my strategies. They are commonly containing several or all of entry signal, close signal, stop loss, take profit, re-entry, risk management, and position sizing techniques. Even some interesting fundamental and mass psychological aspects are incorporated.
Level 4 : script snippets or functions that do not disclose source code. Interesting element that can reveal market laws and work as raw material for indicators and strategies. If you find Level 1~2 scripts are helpful, Level 4 is a private version that took me far more efforts to develop.
Level 5 : indicator/strategy that do not disclose source code. private version of Level 3 script with my accumulated script processing skills or a large number of custom functions. I had a private function library built in past two years. Level 5 scripts use many of them to achieve private trading strategy.
Liquidity Sweep & Reversal — Body Anchored + Risk (v6)Overview
The Liquidity Sweep & Reversal — Locked to Price (v6) indicator identifies liquidity sweeps around major swing highs and lows, confirming reversals when price closes back inside the swept level.
All signals are locked to price (bottom of green candle for BUY, top of red candle for SELL), so they remain perfectly aligned when zooming or scaling.
This indicator is ideal for swing traders and scalpers who trade reversals, liquidity events, and reclaim structures.
How It Works
Detects confirmed swing highs and lows using a pivot-based structure.
Waits for a liquidity sweep — when price wicks beyond a recent swing.
Confirms a reclaim when price closes back inside the previous swing level.
Triggers a BUY or SELL signal anchored to the candle body.
Automatically calculates stop loss and risk using ATR and your inputs.
Input Settings
Swing Detection
Swing Detection Strength: How many bars confirm a swing pivot. Higher = stronger swings.
Bars to Confirm Reclaim: Number of bars after a sweep for price to close back within the swing zone.
Swing Proximity %: How close price must come to a swing to count as a liquidity sweep.
Trend Filter (optional)
Use EMA Trend Filter: When enabled, only BUY in uptrend and SELL in downtrend.
Fast EMA Length / Slow EMA Length: Define EMAs used to detect trend direction.
Risk & Stop Management
ATR Length: Period for ATR calculation (volatility measurement).
Base ATR Stop Buffer (x ATR): Distance of stop loss from entry based on ATR multiplier.
Position Size (quote units): Your total position size in quote currency (e.g., USDT).
Risk % of (Position / 20): Defines how much of your position to risk per trade.
Example: (Position / 20) × Risk % = per-trade risk.
Chart Elements
BUY Arrow (green): Appears after a liquidity sweep and reclaim near a swing low.
SELL Arrow (red): Appears after a sweep and reclaim near a swing high.
Labels: Display entry price, stop loss (SL), and calculated risk dollar value.
EMAs: Optional fast/slow moving averages for directional bias.
Dynamic Stops: Adjust automatically using ATR × risk settings.
Trading Tips
Use BUY signals near liquidity sweeps under swing lows.
Use SELL signals near liquidity sweeps above swing highs.
Adjust swing length for different timeframes:
Lower values for scalping (3–5)
Higher values for swing trading (7–10)
Respect stop loss levels and use risk control settings for consistent sizing.
Combine with volume, OBV, or structure for confirmation.
Alerts
BUY — Locked to Price: "BUY: swing low reclaimed with dynamic stop."
SELL — Locked to Price: "SELL: swing high reclaimed with dynamic stop."
Best Use Cases
Liquidity-based reversals
Swing entry confirmation
Stop hunt reclaims
Structure-based entries
Author
Created by @roccodallas
For traders who value clean structure, risk control, and chart precision.
Quantum Rotational Field MappingQuantum Rotational Field Mapping (QRFM):  
Phase Coherence Detection Through Complex-Plane Oscillator Analysis
 Quantum Rotational Field Mapping  applies complex-plane mathematics and phase-space analysis to oscillator ensembles, identifying high-probability trend ignition points by measuring when multiple independent oscillators achieve phase coherence. Unlike traditional multi-oscillator approaches that simply stack indicators or use boolean AND/OR logic, this system converts each oscillator into a rotating phasor (vector) in the complex plane and calculates the  Coherence Index (CI) —a mathematical measure of how tightly aligned the ensemble has become—then generates signals only when alignment, phase direction, and pairwise entanglement all converge.
The indicator combines three mathematical frameworks:  phasor representation  using analytic signal theory to extract phase and amplitude from each oscillator,  coherence measurement  using vector summation in the complex plane to quantify group alignment, and  entanglement analysis  that calculates pairwise phase agreement across all oscillator combinations. This creates a multi-dimensional confirmation system that distinguishes between random oscillator noise and genuine regime transitions.
 What Makes This Original 
 Complex-Plane Phasor Framework 
This indicator implements classical signal processing mathematics adapted for market oscillators. Each oscillator—whether RSI, MACD, Stochastic, CCI, Williams %R, MFI, ROC, or TSI—is first normalized to a common   scale, then converted into a complex-plane representation using an  in-phase (I)  and  quadrature (Q)  component. The in-phase component is the oscillator value itself, while the quadrature component is calculated as the first difference (derivative proxy), creating a velocity-aware representation.
 From these components, the system extracts: 
 Phase (φ) : Calculated as φ = atan2(Q, I), representing the oscillator's position in its cycle (mapped to -180° to +180°)
 Amplitude (A) : Calculated as A = √(I² + Q²), representing the oscillator's strength or conviction
This mathematical approach is fundamentally different from simply reading oscillator values. A phasor captures both  where  an oscillator is in its cycle (phase angle) and  how strongly  it's expressing that position (amplitude). Two oscillators can have the same value but be in opposite phases of their cycles—traditional analysis would see them as identical, while QRFM sees them as 180° out of phase (contradictory).
 Coherence Index Calculation 
The core innovation is the  Coherence Index (CI) , borrowed from physics and signal processing. When you have N oscillators, each with phase φₙ, you can represent each as a unit vector in the complex plane: e^(iφₙ) = cos(φₙ) + i·sin(φₙ).
 The CI measures what happens when you sum all these vectors: 
 Resultant Vector : R = Σ e^(iφₙ) = Σ cos(φₙ) + i·Σ sin(φₙ)
 Coherence Index : CI = |R| / N
Where |R| is the magnitude of the resultant vector and N is the number of active oscillators.
The CI ranges from 0 to 1:
 CI = 1.0 : Perfect coherence—all oscillators have identical phase angles, vectors point in the same direction, creating maximum constructive interference
 CI = 0.0 : Complete decoherence—oscillators are randomly distributed around the circle, vectors cancel out through destructive interference
 0 < CI < 1 : Partial alignment—some clustering with some scatter
This is not a simple average or correlation. The CI captures  phase synchronization  across the entire ensemble simultaneously. When oscillators phase-lock (align their cycles), the CI spikes regardless of their individual values. This makes it sensitive to regime transitions that traditional indicators miss.
 Dominant Phase and Direction Detection 
Beyond measuring alignment strength, the system calculates the  dominant phase  of the ensemble—the direction the resultant vector points:
 Dominant Phase : φ_dom = atan2(Σ sin(φₙ), Σ cos(φₙ))
This gives the "average direction" of all oscillator phases, mapped to -180° to +180°:
 +90° to -90°  (right half-plane): Bullish phase dominance
 +90° to +180° or -90° to -180°  (left half-plane): Bearish phase dominance
The combination of CI magnitude (coherence strength) and dominant phase angle (directional bias) creates a two-dimensional signal space. High CI alone is insufficient—you need high CI  plus  dominant phase pointing in a tradeable direction. This dual requirement is what separates QRFM from simple oscillator averaging.
 Entanglement Matrix and Pairwise Coherence 
While the CI measures global alignment, the  entanglement matrix  measures local pairwise relationships. For every pair of oscillators (i, j), the system calculates:
 E(i,j) = |cos(φᵢ - φⱼ)| 
This represents the phase agreement between oscillators i and j:
 E = 1.0 : Oscillators are in-phase (0° or 360° apart)
 E = 0.0 : Oscillators are in quadrature (90° apart, orthogonal)
 E between 0 and 1 : Varying degrees of alignment
The system counts how many oscillator pairs exceed a user-defined entanglement threshold (e.g., 0.7). This  entangled pairs count  serves as a confirmation filter: signals require not just high global CI, but also a minimum number of strong pairwise agreements. This prevents false ignitions where CI is high but driven by only two oscillators while the rest remain scattered.
The entanglement matrix creates an N×N symmetric matrix that can be visualized as a web—when many cells are bright (high E values), the ensemble is highly interconnected. When cells are dark, oscillators are moving independently.
 Phase-Lock Tolerance Mechanism 
A complementary confirmation layer is the  phase-lock detector . This calculates the maximum phase spread across all oscillators:
For all pairs (i,j), compute angular distance: Δφ = |φᵢ - φⱼ|, wrapping at 180°
 Max Spread  = maximum Δφ across all pairs
If max spread < user threshold (e.g., 35°), the ensemble is considered  phase-locked —all oscillators are within a narrow angular band.
This differs from entanglement: entanglement measures pairwise cosine similarity (magnitude of alignment), while phase-lock measures maximum angular deviation (tightness of clustering). Both must be satisfied for the highest-conviction signals.
 Multi-Layer Visual Architecture 
QRFM includes six visual components that represent the same underlying mathematics from different perspectives:
 Circular Orbit Plot : A polar coordinate grid showing each oscillator as a vector from origin to perimeter. Angle = phase, radius = amplitude. This is a real-time snapshot of the complex plane. When vectors converge (point in similar directions), coherence is high. When scattered randomly, coherence is low. Users can  see  phase alignment forming before CI numerically confirms it.
 Phase-Time Heat Map : A 2D matrix with rows = oscillators and columns = time bins. Each cell is colored by the oscillator's phase at that time (using a gradient where color hue maps to angle). Horizontal color bands indicate sustained phase alignment over time. Vertical color bands show moments when all oscillators shared the same phase (ignition points). This provides historical pattern recognition.
 Entanglement Web Matrix : An N×N grid showing E(i,j) for all pairs. Cells are colored by entanglement strength—bright yellow/gold for high E, dark gray for low E. This reveals  which  oscillators are driving coherence and which are lagging. For example, if RSI and MACD show high E but Stochastic shows low E with everything, Stochastic is the outlier.
 Quantum Field Cloud : A background color overlay on the price chart. Color (green = bullish, red = bearish) is determined by dominant phase. Opacity is determined by CI—high CI creates dense, opaque cloud; low CI creates faint, nearly invisible cloud. This gives an atmospheric "feel" for regime strength without looking at numbers.
 Phase Spiral : A smoothed plot of dominant phase over recent history, displayed as a curve that wraps around price. When the spiral is tight and rotating steadily, the ensemble is in coherent rotation (trending). When the spiral is loose or erratic, coherence is breaking down.
 Dashboard : A table showing real-time metrics: CI (as percentage), dominant phase (in degrees with directional arrow), field strength (CI × average amplitude), entangled pairs count, phase-lock status (locked/unlocked), quantum state classification ("Ignition", "Coherent", "Collapse", "Chaos"), and collapse risk (recent CI change normalized to 0-100%).
Each component is independently toggleable, allowing users to customize their workspace. The orbit plot is the most essential—it provides intuitive, visual feedback on phase alignment that no numerical dashboard can match.
 Core Components and How They Work Together 
 1. Oscillator Normalization Engine 
The foundation is creating a common measurement scale. QRFM supports eight oscillators:
 RSI : Normalized from   to   using overbought/oversold levels (70, 30) as anchors
 MACD Histogram : Normalized by dividing by rolling standard deviation, then clamped to  
 Stochastic %K : Normalized from   using (80, 20) anchors
 CCI : Divided by 200 (typical extreme level), clamped to  
 Williams %R : Normalized from   using (-20, -80) anchors
 MFI : Normalized from   using (80, 20) anchors
 ROC : Divided by 10, clamped to  
 TSI : Divided by 50, clamped to  
Each oscillator can be individually enabled/disabled. Only active oscillators contribute to phase calculations. The normalization removes scale differences—a reading of +0.8 means "strongly bullish" regardless of whether it came from RSI or TSI.
 2. Analytic Signal Construction 
For each active oscillator at each bar, the system constructs the analytic signal:
 In-Phase (I) : The normalized oscillator value itself
 Quadrature (Q) : The bar-to-bar change in the normalized value (first derivative approximation)
This creates a 2D representation: (I, Q). The phase is extracted as:
φ = atan2(Q, I) × (180 / π)
This maps the oscillator to a point on the unit circle. An oscillator at the same value but rising (positive Q) will have a different phase than one that is falling (negative Q). This velocity-awareness is critical—it distinguishes between "at resistance and stalling" versus "at resistance and breaking through."
The amplitude is extracted as:
A = √(I² + Q²)
This represents the distance from origin in the (I, Q) plane. High amplitude means the oscillator is far from neutral (strong conviction). Low amplitude means it's near zero (weak/transitional state).
3. Coherence Calculation Pipeline
For each bar (or every Nth bar if phase sample rate > 1 for performance):
 Step 1 : Extract phase φₙ for each of the N active oscillators
 Step 2 : Compute complex exponentials: Zₙ = e^(i·φₙ·π/180) = cos(φₙ·π/180) + i·sin(φₙ·π/180)
 Step 3 : Sum the complex exponentials: R = Σ Zₙ = (Σ cos φₙ) + i·(Σ sin φₙ)
 Step 4 : Calculate magnitude: |R| = √ 
 Step 5 : Normalize by count: CI_raw = |R| / N
 Step 6 : Smooth the CI: CI = SMA(CI_raw, smoothing_window)
The smoothing step (default 2 bars) removes single-bar noise spikes while preserving structural coherence changes. Users can adjust this to control reactivity versus stability.
The dominant phase is calculated as:
φ_dom = atan2(Σ sin φₙ, Σ cos φₙ) × (180 / π)
This is the angle of the resultant vector R in the complex plane.
 4. Entanglement Matrix Construction 
For all unique pairs of oscillators (i, j) where i < j:
 Step 1 : Get phases φᵢ and φⱼ
 Step 2 : Compute phase difference: Δφ = φᵢ - φⱼ (in radians)
 Step 3 : Calculate entanglement: E(i,j) = |cos(Δφ)|
 Step 4 : Store in symmetric matrix: matrix  = matrix  = E(i,j)
The matrix is then scanned: count how many E(i,j) values exceed the user-defined threshold (default 0.7). This count is the  entangled pairs  metric.
For visualization, the matrix is rendered as an N×N table where cell brightness maps to E(i,j) intensity.
 5. Phase-Lock Detection 
 Step 1 : For all unique pairs (i, j), compute angular distance: Δφ = |φᵢ - φⱼ|
 Step 2 : Wrap angles: if Δφ > 180°, set Δφ = 360° - Δφ
 Step 3 : Find maximum: max_spread = max(Δφ) across all pairs
 Step 4 : Compare to tolerance: phase_locked = (max_spread < tolerance)
If phase_locked is true, all oscillators are within the specified angular cone (e.g., 35°). This is a boolean confirmation filter.
 6. Signal Generation Logic 
Signals are generated through multi-layer confirmation:
 Long Ignition Signal :
CI crosses above ignition threshold (e.g., 0.80)
 AND  dominant phase is in bullish range (-90° < φ_dom < +90°)
 AND  phase_locked = true
 AND  entangled_pairs >= minimum threshold (e.g., 4)
 Short Ignition Signal :
CI crosses above ignition threshold
 AND  dominant phase is in bearish range (φ_dom < -90° OR φ_dom > +90°)
 AND  phase_locked = true
 AND  entangled_pairs >= minimum threshold
 Collapse Signal :
CI at bar   minus CI at current bar > collapse threshold (e.g., 0.55)
 AND  CI at bar   was above 0.6 (must collapse from coherent state, not from already-low state)
These are strict conditions. A high CI alone does not generate a signal—dominant phase must align with direction, oscillators must be phase-locked, and sufficient pairwise entanglement must exist. This multi-factor gating dramatically reduces false signals compared to single-condition triggers.
 Calculation Methodology 
 Phase 1: Oscillator Computation and Normalization 
On each bar, the system calculates the raw values for all enabled oscillators using standard Pine Script functions:
RSI: ta.rsi(close, length)
MACD: ta.macd() returning histogram component
Stochastic: ta.stoch() smoothed with ta.sma()
CCI: ta.cci(close, length)
Williams %R: ta.wpr(length)
MFI: ta.mfi(hlc3, length)
ROC: ta.roc(close, length)
TSI: ta.tsi(close, short, long)
Each raw value is then passed through a normalization function:
normalize(value, overbought_level, oversold_level) = 2 × (value - oversold) / (overbought - oversold) - 1
This maps the oscillator's typical range to  , where -1 represents extreme bearish, 0 represents neutral, and +1 represents extreme bullish.
For oscillators without fixed ranges (MACD, ROC, TSI), statistical normalization is used: divide by a rolling standard deviation or fixed divisor, then clamp to  .
 Phase 2: Phasor Extraction 
For each normalized oscillator value val:
I = val (in-phase component)
Q = val - val  (quadrature component, first difference)
Phase calculation:
phi_rad = atan2(Q, I)
phi_deg = phi_rad × (180 / π)
Amplitude calculation:
A = √(I² + Q²)
These values are stored in arrays: osc_phases  and osc_amps  for each oscillator n.
 Phase 3: Complex Summation and Coherence 
Initialize accumulators:
sum_cos = 0
sum_sin = 0
For each oscillator n = 0 to N-1:
phi_rad = osc_phases  × (π / 180)
sum_cos += cos(phi_rad)
sum_sin += sin(phi_rad)
Resultant magnitude:
resultant_mag = √(sum_cos² + sum_sin²)
Coherence Index (raw):
CI_raw = resultant_mag / N
Smoothed CI:
CI = SMA(CI_raw, smoothing_window)
Dominant phase:
phi_dom_rad = atan2(sum_sin, sum_cos)
phi_dom_deg = phi_dom_rad × (180 / π)
Phase 4: Entanglement Matrix Population
For i = 0 to N-2:
For j = i+1 to N-1:
phi_i = osc_phases  × (π / 180)
phi_j = osc_phases  × (π / 180)
delta_phi = phi_i - phi_j
E = |cos(delta_phi)|
matrix_index_ij = i × N + j
matrix_index_ji = j × N + i
entangle_matrix  = E
entangle_matrix  = E
if E >= threshold:
  entangled_pairs += 1
The matrix uses flat array storage with index mapping: index(row, col) = row × N + col.
 Phase 5: Phase-Lock Check 
max_spread = 0
For i = 0 to N-2:
For j = i+1 to N-1:
delta = |osc_phases  - osc_phases |
if delta > 180:
delta = 360 - delta
max_spread = max(max_spread, delta)
phase_locked = (max_spread < tolerance)
 Phase 6: Signal Evaluation 
 Ignition Long :
ignition_long = (CI crosses above threshold) AND
(phi_dom > -90 AND phi_dom < 90) AND
phase_locked AND
(entangled_pairs >= minimum)
 Ignition Short :
ignition_short = (CI crosses above threshold) AND
(phi_dom < -90 OR phi_dom > 90) AND
phase_locked AND
(entangled_pairs >= minimum)
 Collapse :
CI_prev = CI 
collapse = (CI_prev - CI > collapse_threshold) AND (CI_prev > 0.6)
All signals are evaluated on bar close. The crossover and crossunder functions ensure signals fire only once when conditions transition from false to true.
 Phase 7: Field Strength and Visualization Metrics 
 Average Amplitude :
avg_amp = (Σ osc_amps ) / N
 Field Strength :
field_strength = CI × avg_amp
 Collapse Risk  (for dashboard):
collapse_risk = (CI  - CI) / max(CI , 0.1)
collapse_risk_pct = clamp(collapse_risk × 100, 0, 100)
 Quantum State Classification :
if (CI > threshold AND phase_locked):
state = "Ignition"
else if (CI > 0.6):
state = "Coherent"
else if (collapse):
state = "Collapse"
else:
state = "Chaos"
 Phase 8: Visual Rendering 
 Orbit Plot : For each oscillator, convert polar (phase, amplitude) to Cartesian (x, y) for grid placement:
radius = amplitude × grid_center × 0.8
x = radius × cos(phase × π/180)
y = radius × sin(phase × π/180)
col = center + x (mapped to grid coordinates)
row = center - y
 Heat Map : For each oscillator row and time column, retrieve historical phase value at lookback = (columns - col) × sample_rate, then map phase to color using a hue gradient.
 Entanglement Web : Render matrix  as table cell with background color opacity = E(i,j).
 Field Cloud : Background color = (phi_dom > -90 AND phi_dom < 90) ? green : red, with opacity = mix(min_opacity, max_opacity, CI).
All visual components render only on the last bar (barstate.islast) to minimize computational overhead.
 How to Use This Indicator 
 Step 1 : Apply QRFM to your chart. It works on all timeframes and asset classes, though 15-minute to 4-hour timeframes provide the best balance of responsiveness and noise reduction.
 Step 2 : Enable the dashboard (default: top right) and the circular orbit plot (default: middle left). These are your primary visual feedback tools.
 Step 3 : Optionally enable the heat map, entanglement web, and field cloud based on your preference. New users may find all visuals overwhelming; start with dashboard + orbit plot.
 Step 4 : Observe for 50-100 bars to let the indicator establish baseline coherence patterns. Markets have different "normal" CI ranges—some instruments naturally run higher or lower coherence.
 Understanding the Circular Orbit Plot 
The orbit plot is a polar grid showing oscillator vectors in real-time:
 Center point : Neutral (zero phase and amplitude)
 Each vector : A line from center to a point on the grid
 Vector angle : The oscillator's phase (0° = right/east, 90° = up/north, 180° = left/west, -90° = down/south)
 Vector length : The oscillator's amplitude (short = weak signal, long = strong signal)
 Vector label : First letter of oscillator name (R = RSI, M = MACD, etc.)
 What to watch :
 Convergence : When all vectors cluster in one quadrant or sector, CI is rising and coherence is forming. This is your pre-signal warning.
 Scatter : When vectors point in random directions (360° spread), CI is low and the market is in a non-trending or transitional regime.
 Rotation : When the cluster rotates smoothly around the circle, the ensemble is in coherent oscillation—typically seen during steady trends.
 Sudden flips : When the cluster rapidly jumps from one side to the opposite (e.g., +90° to -90°), a phase reversal has occurred—often coinciding with trend reversals.
Example: If you see RSI, MACD, and Stochastic all pointing toward 45° (northeast) with long vectors, while CCI, TSI, and ROC point toward 40-50° as well, coherence is high and dominant phase is bullish. Expect an ignition signal if CI crosses threshold.
 Reading Dashboard Metrics 
The dashboard provides numerical confirmation of what the orbit plot shows visually:
 CI : Displays as 0-100%. Above 70% = high coherence (strong regime), 40-70% = moderate, below 40% = low (poor conditions for trend entries).
 Dom Phase : Angle in degrees with directional arrow. ⬆ = bullish bias, ⬇ = bearish bias, ⬌ = neutral.
 Field Strength : CI weighted by amplitude. High values (> 0.6) indicate not just alignment but  strong  alignment.
 Entangled Pairs : Count of oscillator pairs with E > threshold. Higher = more confirmation. If minimum is set to 4, you need at least 4 pairs entangled for signals.
 Phase Lock : 🔒 YES (all oscillators within tolerance) or 🔓 NO (spread too wide).
 State : Real-time classification:
🚀 IGNITION: CI just crossed threshold with phase-lock
⚡ COHERENT: CI is high and stable
💥 COLLAPSE: CI has dropped sharply
🌀 CHAOS: Low CI, scattered phases
 Collapse Risk : 0-100% scale based on recent CI change. Above 50% warns of imminent breakdown.
Interpreting Signals
 Long Ignition (Blue Triangle Below Price) :
Occurs when CI crosses above threshold (e.g., 0.80)
Dominant phase is in bullish range (-90° to +90°)
All oscillators are phase-locked (within tolerance)
Minimum entangled pairs requirement met
 Interpretation : The oscillator ensemble has transitioned from disorder to coherent bullish alignment. This is a high-probability long entry point. The multi-layer confirmation (CI + phase direction + lock + entanglement) ensures this is not a single-oscillator whipsaw.
 Short Ignition (Red Triangle Above Price) :
Same conditions as long, but dominant phase is in bearish range (< -90° or > +90°)
 Interpretation : Coherent bearish alignment has formed. High-probability short entry.
 Collapse (Circles Above and Below Price) :
CI has dropped by more than the collapse threshold (e.g., 0.55) over a 5-bar window
CI was previously above 0.6 (collapsing from coherent state)
 Interpretation : Phase coherence has broken down. If you are in a position, this is an exit warning. If looking to enter, stand aside—regime is transitioning.
 Phase-Time Heat Map Patterns 
Enable the heat map and position it at bottom right. The rows represent individual oscillators, columns represent time bins (most recent on left).
 Pattern: Horizontal Color Bands 
If a row (e.g., RSI) shows consistent color across columns (say, green for several bins), that oscillator has maintained stable phase over time. If  all  rows show horizontal bands of similar color, the entire ensemble has been phase-locked for an extended period—this is a strong trending regime.
 Pattern: Vertical Color Bands 
If a column (single time bin) shows all cells with the same or very similar color, that moment in time had high coherence. These vertical bands often align with ignition signals or major price pivots.
 Pattern: Rainbow Chaos 
If cells are random colors (red, green, yellow mixed with no pattern), coherence is low. The ensemble is scattered. Avoid trading during these periods unless you have external confirmation.
 Pattern: Color Transition 
If you see a row transition from red to green (or vice versa) sharply, that oscillator has phase-flipped. If multiple rows do this simultaneously, a regime change is underway.
 Entanglement Web Analysis 
Enable the web matrix (default: opposite corner from heat map). It shows an N×N grid where N = number of active oscillators.
 Bright Yellow/Gold Cells : High pairwise entanglement. For example, if the RSI-MACD cell is bright gold, those two oscillators are moving in phase. If the RSI-Stochastic cell is bright, they are entangled as well.
 Dark Gray Cells : Low entanglement. Oscillators are decorrelated or in quadrature.
 Diagonal : Always marked with "—" because an oscillator is always perfectly entangled with itself.
 How to use :
Scan for clustering: If most cells are bright, coherence is high across the board. If only a few cells are bright, coherence is driven by a subset (e.g., RSI and MACD are aligned, but nothing else is—weak signal).
Identify laggards: If one row/column is entirely dark, that oscillator is the outlier. You may choose to disable it or monitor for when it joins the group (late confirmation).
Watch for web formation: During low-coherence periods, the matrix is mostly dark. As coherence builds, cells begin lighting up. A sudden "web" of connections forming visually precedes ignition signals.
Trading Workflow
 Step 1: Monitor Coherence Level 
Check the dashboard CI metric or observe the orbit plot. If CI is below 40% and vectors are scattered, conditions are poor for trend entries. Wait.
 Step 2: Detect Coherence Building 
When CI begins rising (say, from 30% to 50-60%) and you notice vectors on the orbit plot starting to cluster, coherence is forming. This is your alert phase—do not enter yet, but prepare.
 Step 3: Confirm Phase Direction 
Check the dominant phase angle and the orbit plot quadrant where clustering is occurring:
Clustering in right half (0° to ±90°): Bullish bias forming
Clustering in left half (±90° to 180°): Bearish bias forming
Verify the dashboard shows the corresponding directional arrow (⬆ or ⬇).
 Step 4: Wait for Signal Confirmation 
Do  not  enter based on rising CI alone. Wait for the full ignition signal:
CI crosses above threshold
Phase-lock indicator shows 🔒 YES
Entangled pairs count >= minimum
Directional triangle appears on chart
This ensures all layers have aligned.
 Step 5: Execute Entry 
 Long : Blue triangle below price appears → enter long
 Short : Red triangle above price appears → enter short
 Step 6: Position Management 
 Initial Stop : Place stop loss based on your risk management rules (e.g., recent swing low/high, ATR-based buffer).
 Monitoring :
Watch the field cloud density. If it remains opaque and colored in your direction, the regime is intact.
Check dashboard collapse risk. If it rises above 50%, prepare for exit.
Monitor the orbit plot. If vectors begin scattering or the cluster flips to the opposite side, coherence is breaking.
 Exit Triggers :
Collapse signal fires (circles appear)
Dominant phase flips to opposite half-plane
CI drops below 40% (coherence lost)
Price hits your profit target or trailing stop
 Step 7: Post-Exit Analysis 
After exiting, observe whether a new ignition forms in the opposite direction (reversal) or if CI remains low (transition to range). Use this to decide whether to re-enter, reverse, or stand aside.
 Best Practices 
 Use Price Structure as Context 
QRFM identifies  when  coherence forms but does not specify  where  price will go. Combine ignition signals with support/resistance levels, trendlines, or chart patterns. For example:
Long ignition near a major support level after a pullback: high-probability bounce
Long ignition in the middle of a range with no structure: lower probability
 Multi-Timeframe Confirmation 
 Open QRFM on two timeframes simultaneously: 
Higher timeframe (e.g., 4-hour): Use CI level to determine regime bias. If 4H CI is above 60% and dominant phase is bullish, the market is in a bullish regime.
Lower timeframe (e.g., 15-minute): Execute entries on ignition signals that align with the higher timeframe bias.
This prevents counter-trend trades and increases win rate.
 Distinguish Between Regime Types 
 High CI, stable dominant phase (State: Coherent) : Trending market. Ignitions are continuation signals; collapses are profit-taking or reversal warnings.
 Low CI, erratic dominant phase (State: Chaos) : Ranging or choppy market. Avoid ignition signals or reduce position size. Wait for coherence to establish.
 Moderate CI with frequent collapses : Whipsaw environment. Use wider stops or stand aside.
 Adjust Parameters to Instrument and Timeframe 
 Crypto/Forex (high volatility) : Lower ignition threshold (0.65-0.75), lower CI smoothing (2-3), shorter oscillator lengths (7-10).
 Stocks/Indices (moderate volatility) : Standard settings (threshold 0.75-0.85, smoothing 5-7, oscillator lengths 14).
 Lower timeframes (5-15 min) : Reduce phase sample rate to 1-2 for responsiveness.
 Higher timeframes (daily+) : Increase CI smoothing and oscillator lengths for noise reduction.
 Use Entanglement Count as Conviction Filter 
 The minimum entangled pairs setting controls signal strictness: 
 Low (1-2) : More signals, lower quality (acceptable if you have other confirmation)
 Medium (3-5) : Balanced (recommended for most traders)
 High (6+) : Very strict, fewer signals, highest quality
Adjust based on your trade frequency preference and risk tolerance.
 Monitor Oscillator Contribution 
Use the entanglement web to see which oscillators are driving coherence. If certain oscillators are consistently dark (low E with all others), they may be adding noise. Consider disabling them. For example:
On low-volume instruments, MFI may be unreliable → disable MFI
On strongly trending instruments, mean-reversion oscillators (Stochastic, RSI) may lag → reduce weight or disable
 Respect the Collapse Signal 
Collapse events are early warnings. Price may continue in the original direction for several bars after collapse fires, but the underlying regime has weakened. Best practice:
If in profit: Take partial or full profit on collapse
If at breakeven/small loss: Exit immediately
If collapse occurs shortly after entry: Likely a false ignition; exit to avoid drawdown
Collapses do not guarantee immediate reversals—they signal  uncertainty .
 Combine with Volume Analysis 
If your instrument has reliable volume:
Ignitions with expanding volume: Higher conviction
Ignitions with declining volume: Weaker, possibly false
Collapses with volume spikes: Strong reversal signal
Collapses with low volume: May just be consolidation
Volume is not built into QRFM (except via MFI), so add it as external confirmation.
 Observe the Phase Spiral 
The spiral provides a quick visual cue for rotation consistency:
 Tight, smooth spiral : Ensemble is rotating coherently (trending)
 Loose, erratic spiral : Phase is jumping around (ranging or transitional)
If the spiral tightens, coherence is building. If it loosens, coherence is dissolving.
 Do Not Overtrade Low-Coherence Periods 
When CI is persistently below 40% and the state is "Chaos," the market is not in a regime where phase analysis is predictive. During these times:
Reduce position size
Widen stops
Wait for coherence to return
QRFM's strength is regime detection. If there is no regime, the tool correctly signals "stand aside."
 Use Alerts Strategically 
 Set alerts for: 
Long Ignition
Short Ignition
Collapse
Phase Lock (optional)
Configure alerts to "Once per bar close" to avoid intrabar repainting and noise. When an alert fires, manually verify:
Orbit plot shows clustering
Dashboard confirms all conditions
Price structure supports the trade
Do not blindly trade alerts—use them as prompts for analysis.
Ideal Market Conditions
Best Performance
 Instruments :
Liquid, actively traded markets (major forex pairs, large-cap stocks, major indices, top-tier crypto)
Instruments with clear cyclical oscillator behavior (avoid extremely illiquid or manipulated markets)
 Timeframes :
15-minute to 4-hour: Optimal balance of noise reduction and responsiveness
1-hour to daily: Slower, higher-conviction signals; good for swing trading
5-minute: Acceptable for scalping if parameters are tightened and you accept more noise
 Market Regimes :
Trending markets with periodic retracements (where oscillators cycle through phases predictably)
Breakout environments (coherence forms before/during breakout; collapse occurs at exhaustion)
Rotational markets with clear swings (oscillators phase-lock at turning points)
 Volatility :
Moderate to high volatility (oscillators have room to move through their ranges)
Stable volatility regimes (sudden VIX spikes or flash crashes may create false collapses)
Challenging Conditions
 Instruments :
Very low liquidity markets (erratic price action creates unstable oscillator phases)
Heavily news-driven instruments (fundamentals may override technical coherence)
Highly correlated instruments (oscillators may all reflect the same underlying factor, reducing independence)
 Market Regimes :
Deep, prolonged consolidation (oscillators remain near neutral, CI is chronically low, few signals fire)
Extreme chop with no directional bias (oscillators whipsaw, coherence never establishes)
Gap-driven markets (large overnight gaps create phase discontinuities)
 Timeframes :
Sub-5-minute charts: Noise dominates; oscillators flip rapidly; coherence is fleeting and unreliable
Weekly/monthly: Oscillators move extremely slowly; signals are rare; better suited for long-term positioning than active trading
 Special Cases :
During major economic releases or earnings: Oscillators may lag price or become decorrelated as fundamentals overwhelm technicals. Reduce position size or stand aside.
In extremely low-volatility environments (e.g., holiday periods): Oscillators compress to neutral, CI may be artificially high due to lack of movement, but signals lack follow-through.
Adaptive Behavior
QRFM is designed to self-adapt to poor conditions:
When coherence is genuinely absent, CI remains low and signals do not fire
When only a subset of oscillators aligns, entangled pairs count stays below threshold and signals are filtered out
When phase-lock cannot be achieved (oscillators too scattered), the lock filter prevents signals
This means the indicator will naturally produce fewer (or zero) signals during unfavorable conditions, rather than generating false signals. This is a  feature —it keeps you out of low-probability trades.
Parameter Optimization by Trading Style
Scalping (5-15 Minute Charts)
 Goal : Maximum responsiveness, accept higher noise
 Oscillator Lengths :
RSI: 7-10
MACD: 8/17/6
Stochastic: 8-10, smooth 2-3
CCI: 14-16
Others: 8-12
 Coherence Settings :
CI Smoothing Window: 2-3 bars (fast reaction)
Phase Sample Rate: 1 (every bar)
Ignition Threshold: 0.65-0.75 (lower for more signals)
Collapse Threshold: 0.40-0.50 (earlier exit warnings)
 Confirmation :
Phase Lock Tolerance: 40-50° (looser, easier to achieve)
Min Entangled Pairs: 2-3 (fewer oscillators required)
 Visuals :
Orbit Plot + Dashboard only (reduce screen clutter for fast decisions)
Disable heavy visuals (heat map, web) for performance
 Alerts :
Enable all ignition and collapse alerts
Set to "Once per bar close"
Day Trading (15-Minute to 1-Hour Charts)
 Goal : Balance between responsiveness and reliability
 Oscillator Lengths :
RSI: 14 (standard)
MACD: 12/26/9 (standard)
Stochastic: 14, smooth 3
CCI: 20
Others: 10-14
 Coherence Settings :
CI Smoothing Window: 3-5 bars (balanced)
Phase Sample Rate: 2-3
Ignition Threshold: 0.75-0.85 (moderate selectivity)
Collapse Threshold: 0.50-0.55 (balanced exit timing)
 Confirmation :
Phase Lock Tolerance: 30-40° (moderate tightness)
Min Entangled Pairs: 4-5 (reasonable confirmation)
 Visuals :
Orbit Plot + Dashboard + Heat Map or Web (choose one)
Field Cloud for regime backdrop
 Alerts :
Ignition and collapse alerts
Optional phase-lock alert for advance warning
Swing Trading (4-Hour to Daily Charts)
 Goal : High-conviction signals, minimal noise, fewer trades
 Oscillator Lengths :
RSI: 14-21
MACD: 12/26/9 or 19/39/9 (longer variant)
Stochastic: 14-21, smooth 3-5
CCI: 20-30
Others: 14-20
 Coherence Settings :
CI Smoothing Window: 5-10 bars (very smooth)
Phase Sample Rate: 3-5
Ignition Threshold: 0.80-0.90 (high bar for entry)
Collapse Threshold: 0.55-0.65 (only significant breakdowns)
 Confirmation :
Phase Lock Tolerance: 20-30° (tight clustering required)
Min Entangled Pairs: 5-7 (strong confirmation)
 Visuals :
All modules enabled (you have time to analyze)
Heat Map for multi-bar pattern recognition
Web for deep confirmation analysis
 Alerts :
Ignition and collapse
Review manually before entering (no rush)
Position/Long-Term Trading (Daily to Weekly Charts)
 Goal : Rare, very high-conviction regime shifts
 Oscillator Lengths :
RSI: 21-30
MACD: 19/39/9 or 26/52/12
Stochastic: 21, smooth 5
CCI: 30-50
Others: 20-30
 Coherence Settings :
CI Smoothing Window: 10-14 bars
Phase Sample Rate: 5 (every 5th bar to reduce computation)
Ignition Threshold: 0.85-0.95 (only extreme alignment)
Collapse Threshold: 0.60-0.70 (major regime breaks only)
 Confirmation :
Phase Lock Tolerance: 15-25° (very tight)
Min Entangled Pairs: 6+ (broad consensus required)
 Visuals :
Dashboard + Orbit Plot for quick checks
Heat Map to study historical coherence patterns
Web to verify deep entanglement
 Alerts :
Ignition only (collapses are less critical on long timeframes)
Manual review with fundamental analysis overlay
Performance Optimization (Low-End Systems)
If you experience lag or slow rendering:
 Reduce Visual Load :
Orbit Grid Size: 8-10 (instead of 12+)
Heat Map Time Bins: 5-8 (instead of 10+)
Disable Web Matrix entirely if not needed
Disable Field Cloud and Phase Spiral
 Reduce Calculation Frequency :
Phase Sample Rate: 5-10 (calculate every 5-10 bars)
Max History Depth: 100-200 (instead of 500+)
 Disable Unused Oscillators :
If you only want RSI, MACD, and Stochastic, disable the other five. Fewer oscillators = smaller matrices, faster loops.
 Simplify Dashboard :
Choose "Small" dashboard size
Reduce number of metrics displayed
These settings will not significantly degrade signal quality (signals are based on bar-close calculations, which remain accurate), but will improve chart responsiveness.
Important Disclaimers
This indicator is a technical analysis tool designed to identify periods of phase coherence across an ensemble of oscillators. It is  not  a standalone trading system and does not guarantee profitable trades. The Coherence Index, dominant phase, and entanglement metrics are mathematical calculations applied to historical price data—they measure past oscillator behavior and do not predict future price movements with certainty.
 No Predictive Guarantee : High coherence indicates that oscillators are currently aligned, which historically has coincided with trending or directional price movement. However, past alignment does not guarantee future trends. Markets can remain coherent while prices consolidate, or lose coherence suddenly due to news, liquidity changes, or other factors not captured by oscillator mathematics.
 Signal Confirmation is Probabilistic : The multi-layer confirmation system (CI threshold + dominant phase + phase-lock + entanglement) is designed to filter out low-probability setups. This increases the proportion of valid signals relative to false signals, but does not eliminate false signals entirely. Users should combine QRFM with additional analysis—support and resistance levels, volume confirmation, multi-timeframe alignment, and fundamental context—before executing trades.
 Collapse Signals are Warnings, Not Reversals : A coherence collapse indicates that the oscillator ensemble has lost alignment. This often precedes trend exhaustion or reversals, but can also occur during healthy pullbacks or consolidations. Price may continue in the original direction after a collapse. Use collapses as risk management cues (tighten stops, take partial profits) rather than automatic reversal entries.
 Market Regime Dependency : QRFM performs best in markets where oscillators exhibit cyclical, mean-reverting behavior and where trends are punctuated by retracements. In markets dominated by fundamental shocks, gap openings, or extreme low-liquidity conditions, oscillator coherence may be less reliable. During such periods, reduce position size or stand aside.
 Risk Management is Essential : All trading involves risk of loss. Use appropriate stop losses, position sizing, and risk-per-trade limits. The indicator does not specify stop loss or take profit levels—these must be determined by the user based on their risk tolerance and account size. Never risk more than you can afford to lose.
 Parameter Sensitivity : The indicator's behavior changes with input parameters. Aggressive settings (low thresholds, loose tolerances) produce more signals with lower average quality. Conservative settings (high thresholds, tight tolerances) produce fewer signals with higher average quality. Users should backtest and forward-test parameter sets on their specific instruments and timeframes before committing real capital.
 No Repainting by Design : All signal conditions are evaluated on bar close using bar-close values. However, the visual components (orbit plot, heat map, dashboard) update in real-time during bar formation for monitoring purposes. For trade execution, rely on the confirmed signals (triangles and circles) that appear only after the bar closes.
 Computational Load : QRFM performs extensive calculations, including nested loops for entanglement matrices and real-time table rendering. On lower-powered devices or when running multiple indicators simultaneously, users may experience lag. Use the performance optimization settings (reduce visual complexity, increase phase sample rate, disable unused oscillators) to improve responsiveness.
This system is most effective when used as  one component  within a broader trading methodology that includes sound risk management, multi-timeframe analysis, market context awareness, and disciplined execution. It is a tool for regime detection and signal confirmation, not a substitute for comprehensive trade planning.
Technical Notes
 Calculation Timing : All signal logic (ignition, collapse) is evaluated using bar-close values. The barstate.isconfirmed or implicit bar-close behavior ensures signals do not repaint. Visual components (tables, plots) render on every tick for real-time feedback but do not affect signal generation.
 Phase Wrapping : Phase angles are calculated in the range -180° to +180° using atan2. Angular distance calculations account for wrapping (e.g., the distance between +170° and -170° is 20°, not 340°). This ensures phase-lock detection works correctly across the ±180° boundary.
 Array Management : The indicator uses fixed-size arrays for oscillator phases, amplitudes, and the entanglement matrix. The maximum number of oscillators is 8. If fewer oscillators are enabled, array sizes shrink accordingly (only active oscillators are processed).
 Matrix Indexing : The entanglement matrix is stored as a flat array with size N×N, where N is the number of active oscillators. Index mapping: index(row, col) = row × N + col. Symmetric pairs (i,j) and (j,i) are stored identically.
 Normalization Stability : Oscillators are normalized to   using fixed reference levels (e.g., RSI overbought/oversold at 70/30). For unbounded oscillators (MACD, ROC, TSI), statistical normalization (division by rolling standard deviation) is used, with clamping to prevent extreme outliers from distorting phase calculations.
 Smoothing and Lag : The CI smoothing window (SMA) introduces lag proportional to the window size. This is intentional—it filters out single-bar noise spikes in coherence. Users requiring faster reaction can reduce the smoothing window to 1-2 bars, at the cost of increased sensitivity to noise.
 Complex Number Representation : Pine Script does not have native complex number types. Complex arithmetic is implemented using separate real and imaginary accumulators (sum_cos, sum_sin) and manual calculation of magnitude (sqrt(real² + imag²)) and argument (atan2(imag, real)).
 Lookback Limits : The indicator respects Pine Script's maximum lookback constraints. Historical phase and amplitude values are accessed using the   operator, with lookback limited to the chart's available bar history (max_bars_back=5000 declared).
 Visual Rendering Performance : Tables (orbit plot, heat map, web, dashboard) are conditionally deleted and recreated on each update using table.delete() and table.new(). This prevents memory leaks but incurs redraw overhead. Rendering is restricted to barstate.islast (last bar) to minimize computational load—historical bars do not render visuals.
 Alert Condition Triggers : alertcondition() functions evaluate on bar close when their boolean conditions transition from false to true. Alerts do not fire repeatedly while a condition remains true (e.g., CI stays above threshold for 10 bars fires only once on the initial cross).
 Color Gradient Functions : The phaseColor() function maps phase angles to RGB hues using sine waves offset by 120° (red, green, blue channels). This creates a continuous spectrum where -180° to +180° spans the full color wheel. The amplitudeColor() function maps amplitude to grayscale intensity. The coherenceColor() function uses cos(phase) to map contribution to CI (positive = green, negative = red).
 No External Data Requests : QRFM operates entirely on the chart's symbol and timeframe. It does not use request.security() or access external data sources. All calculations are self-contained, avoiding lookahead bias from higher-timeframe requests.
 Deterministic Behavior : Given identical input parameters and price data, QRFM produces identical outputs. There are no random elements, probabilistic sampling, or time-of-day dependencies.
— Dskyz, Engineering precision. Trading coherence.
Relative Volume (Multi-TF, D, W, M)Relative Volume (Multi-TF, Candle-Matched Colors)
This indicator measures Relative Volume (RVOL) — the ratio of current volume to average historical volume — across any higher timeframe (Daily, Weekly, or Monthly) and displays it as color-coded columns that match the candle colors of the chart you’re viewing.
RVOL reveals how active today’s market participation is compared to its typical rhythm.
RVOL = 1.0 → normal volume
>1.5 → rising interest
>2.0–3.0 → strong institutional participation
>5.0 → climax or exhaustion levels
Features
Works on any chart timeframe while computing RVOL from your chosen higher timeframe (e.g., show Daily RVOL while trading on a 5-minute chart).
Column colors automatically match your chart’s candle colors (green/red/neutral).
Adjustable lookback period (len) and selectable source timeframe (D, W, or M).
Pre-drawn horizontal guide levels at 1.0, 1.2, 1.5, 2, 3, and 5 for quick interpretation.
Compatible with all chart types, including Heikin Ashi or custom color schemes.
Typical Use
Swing trading:
Look for quiet bases where RVOL stays 0.4–0.9, then expansion ≥2 on breakout days.
Confirm follow-through when green days keep RVOL ≥1.2–1.5 and red pullbacks stay below 1.0.
Day trading:
Watch intraday RVOL (on 1–5m charts) for bursts ≥2 that sustain for several bars — this signals crowd engagement and valid momentum.
Interpretation Summary
RVOL Value	Meaning	Typical Action
0.4–0.9	Quiet base / low interest	Watch for setup
1.0	Normal activity	Neutral
1.2–1.5	Valid participation	Early confirmation
2–3	Strong expansion	Momentum / breakout
≥5	Climax / exhaustion	Take profits or avoid new entries
Author’s note:
RVOL isn’t directional; it tells how many players are active, not who’s winning. Combine it with structure (levels, VWAP, or trend) to see when the market crowd truly commits.
Liquidity Levels - PMH/PWH/PDH/HODWhat is it?
An indicator that tracks the main liquidity levels on TradingView, displaying the highs and lows of reference for month, week, previous day and current day.
What's it for?
It identifies price zones where there are many pending orders (liquidity). Traders use it to:
Find support and resistance points
Identify areas where price could bounce or break through
Receive alerts when price touches or breaks these levels
Which levels does it show?
LevelDescriptionColorLinePMH/PMLPrevious month's high and lowPurpleSolidPWH/PWLPrevious week's high and lowBlueSolidPDH/PDLPrevious day's high and lowOrangeSolidHOD/LODCurrent day's high and lowGrayDotted
How to use it?
Apply the indicator to your chart
Customize colors and enable/disable the levels you prefer
Set alerts to receive notifications when price touches or breaks levels
Use the levels to make trading decisions (entry, exit, stop loss)
Perfect for: Scalping, Day Trading, Swing Trading on any asset (forex, crypto, stocks)
PDB - RSI Based Buy/Sell signals with 4 MARSI Based Buy/Sell Signals on Price chart + 4 MA System 
This indicator plots  RSI-based Buy & Sell signals directly on the price chart , combined with a 4-Moving-Average trend filter (20/50/100/200) for higher accuracy and cleaner trade timing.
The signal triggers when RSI reaches user-defined overbought/oversold levels, but unlike a standard RSI, this version plots the signals **on the chart**, not in the RSI window — making entries and exits easier to see in real time.
 RSI Levels Are Fully Customizable 
The default RSI thresholds are 30 (oversold) and 70 (overbought).
However, you can adjust these to fit your trading style. For example:
> When day trading on the 5–15 min timeframe, I personally use 35 (oversold) and 75 (overbought) to catch moves earlier.
> The example shown in the preview image uses 10-minute timeframe settings.
You can change the RSI levels to trigger signals from **any value you choose**, allowing you to tailor the indicator to scalping, day trading, or swing trading.
4 Moving Averages Included:
20, 50, 100, 200 MAs act as dynamic trend filters so you can:
✔ trade signals only in the direction of trend
✔ avoid false reversals
✔ identify momentum shifts more clearly
Works on all markets and timeframes — crypto, stocks, FX, indices.
Ehlers Phasor Analysis (PHASOR)# PHASOR: Phasor Analysis (Ehlers)
## Overview and Purpose
The Phasor Analysis indicator, developed by John Ehlers, represents an advanced cycle analysis tool that identifies the phase of the dominant cycle component in a time series through complex signal processing techniques. This sophisticated indicator uses correlation-based methods to determine the real and imaginary components of the signal, converting them to a continuous phase angle that reveals market cycle progression. Unlike traditional oscillators, the Phasor provides unwrapped phase measurements that accumulate continuously, offering unique insights into market timing and cycle behavior.
## Core Concepts
*   **Complex Signal Analysis** — Uses real and imaginary components to determine cycle phase
*   **Correlation-Based Detection** — Employs Ehlers' correlation method for robust phase estimation
*   **Unwrapped Phase Tracking** — Provides continuous phase accumulation without discontinuities
*   **Anti-Regression Logic** — Prevents phase angle from moving backward under specific conditions
Market Applications:
*   **Cycle Timing** — Precise identification of cycle peaks and troughs
*   **Market Regime Analysis** — Distinguishes between trending and cycling market conditions
*   **Turning Point Detection** — Advanced warning system for potential market reversals
## Common Settings and Parameters
| Parameter | Default | Function | When to Adjust |
|-----------|---------|----------|----------------|
| Period | 28 | Fixed cycle period for correlation analysis | Match to expected dominant cycle length |
| Source | Close | Price series for phase calculation | Use typical price or other smoothed series |
| Show Derived Period | false | Display calculated period from phase rate | Enable for adaptive period analysis |
| Show Trend State | false | Display trend/cycle state variable | Enable for regime identification |
## Calculation and Mathematical Foundation
**Technical Formula:**
**Stage 1: Correlation Analysis**
For period $n$ and source $x_t$:
Real component correlation with cosine wave:
$$R = \frac{n \sum x_t \cos\left(\frac{2\pi t}{n}\right) - \sum x_t \sum \cos\left(\frac{2\pi t}{n}\right)}{\sqrt{D_{cos}}}$$
Imaginary component correlation with negative sine wave:
$$I = \frac{n \sum x_t \left(-\sin\left(\frac{2\pi t}{n}\right)\right) - \sum x_t \sum \left(-\sin\left(\frac{2\pi t}{n}\right)\right)}{\sqrt{D_{sin}}}$$
where $D_{cos}$ and $D_{sin}$ are normalization denominators.
**Stage 2: Phase Angle Conversion**
$$\theta_{raw} = \begin{cases}
90° - \arctan\left(\frac{I}{R}\right) \cdot \frac{180°}{\pi} & \text{if } R \neq 0 \\
0° & \text{if } R = 0, I > 0 \\
180° & \text{if } R = 0, I \leq 0
\end{cases}$$
**Stage 3: Phase Unwrapping**
$$\theta_{unwrapped}(t) = \theta_{unwrapped}(t-1) + \Delta\theta$$
where $\Delta\theta$ is the normalized phase difference.
**Stage 4: Ehlers' Anti-Regression Condition**
$$\theta_{final}(t) = \begin{cases}
\theta_{final}(t-1) & \text{if regression conditions met} \\
\theta_{unwrapped}(t) & \text{otherwise}
\end{cases}$$
**Derived Calculations:**
Derived Period: $P_{derived} = \frac{360°}{\Delta\theta_{final}}$ (clamped to  )
Trend State: 
$$S_{trend} = \begin{cases}
1 & \text{if } \Delta\theta \leq 6° \text{ and } |\theta| \geq 90° \\
-1 & \text{if } \Delta\theta \leq 6° \text{ and } |\theta| < 90° \\
0 & \text{if } \Delta\theta > 6°
\end{cases}$$
> 🔍 **Technical Note:** The correlation-based approach provides robust phase estimation even in noisy market conditions, while the unwrapping mechanism ensures continuous phase tracking across cycle boundaries.
## Interpretation Details
*   **Phasor Angle (Primary Output):**
    - **+90°**: Potential cycle peak region
    - **0°**: Mid-cycle ascending phase
    - **-90°**: Potential cycle trough region
    - **±180°**: Mid-cycle descending phase
*   **Phase Progression:**
    - Continuous upward movement → Normal cycle progression
    - Phase stalling → Potential cycle extension or trend development
    - Rapid phase changes → Cycle compression or volatility spike
*   **Derived Period Analysis:**
    - Period < 10 → High-frequency cycle dominance
    - Period 15-40 → Typical swing trading cycles
    - Period > 50 → Trending market conditions
*   **Trend State Variable:**
    - **+1**: Long trend conditions (slow phase change in extreme zones)
    - **-1**: Short trend or consolidation (slow phase change in neutral zones)
    - **0**: Active cycling (normal phase change rate)
## Applications
*   **Cycle-Based Trading:**
    - Enter long positions near -90° crossings (cycle troughs)
    - Enter short positions near +90° crossings (cycle peaks)
    - Exit positions during mid-cycle phases (0°, ±180°)
*   **Market Timing:**
    - Use phase acceleration for early trend detection
    - Monitor derived period for cycle length changes
    - Combine with trend state for regime-appropriate strategies
*   **Risk Management:**
    - Adjust position sizes based on cycle clarity (derived period stability)
    - Implement different risk parameters for trending vs. cycling regimes
    - Use phase velocity for stop-loss placement timing
## Limitations and Considerations
*   **Parameter Sensitivity:**
    - Fixed period assumption may not match actual market cycles
    - Requires cycle period optimization for different markets and timeframes
    - Performance degrades when multiple cycles interfere
*   **Computational Complexity:**
    - Correlation calculations over full period windows
    - Multiple mathematical transformations increase processing requirements
    - Real-time implementation requires efficient algorithms
*   **Market Conditions:**
    - Most effective in markets with clear cyclical behavior
    - May provide false signals during strong trending periods
    - Requires sufficient historical data for correlation analysis
Complementary Indicators:
* MESA Adaptive Moving Average (cycle-based smoothing)
* Dominant Cycle Period indicators
* Detrended Price Oscillator (cycle identification)
## References
1. Ehlers, J.F. "Cycle Analytics for Traders." Wiley, 2013.
2. Ehlers, J.F. "Cybernetic Analysis for Stocks and Futures." Wiley, 2004.
Trend Candles Full ColorThe coloring over the candle sticks isn't showing up on the picture for some reason but when you click on the indicator the color coding will appear on the chart.   
Trend Candles Full Color Indicator Explanation The "Trend Candles Full Color" indicator, designed for TradingView, visually enhances candlestick charts by coloring candles based on their position relative to a simple moving average (SMA). Here's how it works and how it can benefit traders: How It Works Input : Adjust the SMA period (default is 20) to define the trend length.
Logic : The indicator compares the closing price of each candle to the SMA: Green Candle : Close is above the SMA (indicating an uptrend).
Red Candle : Close is below the SMA (indicating a downtrend).
Gray Candle : Close equals the SMA (neutral/no clear trend).
Output : Candles (body, wick, and border) are colored green, red, or gray based on the trend, overlaid directly on your price chart.
Benefits and Use Cases Trend-Following Strategies Benefit: Clearly identifies bullish (green) or bearish (red) trends, helping traders ride momentum.
Example: A swing trader using a 20-period SMA can enter long positions when candles turn green (price above SMA) and exit or short when candles turn red, confirming trend reversals.
Reversal Trading Benefit: Gray candles signal indecision near the SMA, often a precursor to reversals.
Example: A day trader might watch for gray candles after a prolonged uptrend (green candles) to anticipate a potential bearish reversal, combining with other indicators like RSI for confirmation.
Scalping Benefit: Quick visual cues for short-term trend changes on lower timeframes.
Example: A scalper on a 5-minute chart can use green candles to confirm quick bullish moves and red candles to avoid counter-trend trades, enhancing decision speed.
Position Sizing or Risk Management Benefit: Color changes highlight trend strength, aiding in adjusting trade size or stops.
Example: A trader might increase position size during strong green candle sequences (sustained uptrend) and tighten stops when gray candles appear, signaling potential trend weakness.
Tips for Use Adjust the MA Length to suit your trading style (e.g., shorter for scalping, longer for swing trading).
Combine with other indicators (e.g., support/resistance, MACD) for better accuracy.
Test on different timeframes to match your strategy.
Recommended MA Length for 1-Minute Charts Short-Term/Scalping (1-5 minute trades):10-period SMA : Very sensitive, ideal for capturing quick price movements in fast markets. May produce more noise (false signals).
20-period SMA : A balanced choice for 1-minute charts, smoothing minor fluctuations while reacting to short-term trends. A great starting point for scalpers.
Intraday Trend Trading (10-30 minute holds):50-period SMA : Captures broader intraday trends, reducing noise but lagging slightly. Suitable for larger moves within a session.
This indicator simplifies trend identification, making it a versatile tool for traders of all styles, from beginners to advanced users! 
Recommended MA Length for Swing Trading / Higher Timeframes Swing Trading (holding trades for days to weeks):50-period SMA : A popular choice for swing traders on higher timeframes (e.g., 1-hour or 4-hour charts). It smooths out short-term fluctuations while identifying medium-term trends. Ideal for capturing multi-day swings.
100-period SMA : Slightly longer, this MA is great for confirming stronger, more sustained trends. It’s useful on 4-hour or daily charts for swing traders aiming to ride larger price moves.
Longer-Term Trend Trading (holding for weeks to months):200-period SMA : A classic choice for higher timeframes like daily or weekly charts. It highlights major market trends and is widely used by swing and position traders to filter out noise and focus on long-term direction.
150-period SMA : A middle ground between the 100 and 200 SMA, suitable for daily charts when you want a balance between responsiveness and trend reliability.
MEGA_Long/Short📊 MTF Entry Signal (with L/S Labels)
A clean and compact multi-timeframe entry point indicator for TradingView. Shows clear entry signals for LONG and SHORT trades directly on the chart, with markers and letters for quick decision-making.
🎯 Key Features:
Dual timeframe analysis: Choose main and fast timeframes (default: 30m and 4h).
Entry signals:
🟢 Green triangle + "L" — LONG entry (Buy signal)
🔴 Red triangle + "S" — SHORT entry (Sell signal)
Signal only at true trend reversals – No excessive markers or noise.
Markers move dynamically with price – Always match the candlestick and chart movement.
⚙️ Signal Criteria:
LONG: EMA9 > EMA21 and MACD > 0, confirmed on both selected timeframes.
SHORT: EMA9 < EMA21 and MACD < 0, confirmed on both selected timeframes.
Entry marker appears only when signal direction changes.
🔧 Settings:
Manually select fast/main timeframes in the indicator menu (recommended: 30m + 4h).
Marker size set to minimal (size=tiny) for maximum clarity.
📈 Usage:
Designed for clean, non-overloaded charts.
Works perfectly for trend trading, reversals, and entry confirmation.
Suitable for scalping, swing trading, and crypto/futures analysis.
Julius Single TrailJulius Single Trail — How it works
This indicator combines a Kalman-like smoothed Donchian midline with an ATR-style volatility buffer to create a single adaptive trailing line that flips with trend. It also recolors candles to reflect regime and visually marks ranging conditions using Bollinger Band width. Optionally, it adds a dotted price line and can hide default candles for a clean, unified look.
 Core logic 
Donchian midpoint: Calculates the middle of the highest high and lowest low over Donchian Length. This is the directional anchor.
Kalman-like smoothing: Applies a lightweight exponential update to the Donchian midpoint using Alpha, reducing noise while staying responsive.
Volatility buffer: Uses RMA of True Range over Volatility Length multiplied by Volatility Multiplier to form an adaptive offset around the smoothed midline.
Dynamic trail:
Up-trend regime (regime = 1): The trail is kMid - offset and only ratchets upward (math.max), acting like a long stop.
Down-trend regime (regime = -1): The trail is kMid + offset and only ratchets downward (math.min), acting like a short stop.
Flip conditions: Regime flips only when price is on the far side of both the smoothed midpoint and the current trail:
Flip to down when close < kMid and close < dynTrail
Flip to up when close > kMid and close > dynTrail
Candle styling:
Wick color shows immediate price direction (green for bullish, red for bearish).
Body color follows the trail’s regime (Uptrend Color or Downtrend Color).
In ranging conditions, all candle elements turn gray.
Ranging detection:
Computes Bollinger Bands on close with BB Length and BB Multiplier.
Calculates width as a percentage of the basis. If width% (optionally smoothed) is below Range Threshold %, candles are gray to signal consolidation.
 What it plots 
Dynamic Trail: A single, thick line that changes color by regime:
Uptrend: Uptrend Color (default lime)
Downtrend: Downtrend Color (default red)
Optional Trail Fill to Close: A translucent band between the trail and the close (disabled by default).
Optional Dotted Price Line: A dotted horizontal line at the current price (toggle via Show Dotted Price Line).
Candle treatment:
You can hide default candles (Hide Default Candles), then use a separate custom-candle script for wick/body/border mapping. In this script, default candles can be made fully transparent to let the trail and colors dominate.
 Inputs 
Donchian Length: Window for the highest/lowest used to form the midline.
Kalman Alpha 0–1: Smoothing factor for the midline. Higher = more responsive, lower = smoother.
Volatility Length: RMA length of True Range for the volatility buffer.
Volatility Multiplier: Scales the buffer around the midline. Higher widens the trail, reducing flips.
Uptrend Color / Downtrend Color: Trail and body color by regime.
Show Cloud To Close: Fills between price and trail using the trail’s color.
Hide Default Candles: Makes the native candles fully transparent.
Show Dotted Price Line / Price Line Color: Toggles and colors the dotted price line.
Ranging parameters:
BB Length (Ranging) and BB Multiplier (Ranging): Bollinger Band settings.
Range Threshold %: If BB width% < threshold, candles turn gray to indicate range.
Use Smoothed Width / Width Smoothing Length: Smooths BB width% before comparison.
 Signals and interpretation 
Regime shifts:
Bullish flip: When price closes above both the smoothed midpoint and the current trail. Trail switches to the lower band (kMid - offset) and ratchets up.
Bearish flip: When price closes below both the smoothed midpoint and the current trail. Trail switches to the upper band (kMid + offset) and ratchets down.
Trend bias:
Green trail/body: Favor long bias; trail can serve as a dynamic stop.
Red trail/body: Favor short bias; trail can serve as a dynamic stop.
Ranging filter:
Gray candles: Lower-probability trend continuation; consider reducing position sizing, waiting for a breakout, or using mean-reversion tactics.
 How to use it 
Trend following:
Enter in the direction of the regime when flips occur or on pullbacks that respect the trail.
Use the trail as a stop-loss guide: exit when price closes beyond the trail and the regime flips.
Range awareness:
When candles turn gray, avoid trend entries or switch to range tactics. Wait for color to return and a clean flip.
Tuning suggestions:
Faster, more responsive: Lower Donchian Length, increase Alpha, lower Volatility Length and/or Volatility Multiplier.
Smoother, fewer flips: Increase Donchian Length, decrease Alpha, increase Volatility Length and/or Volatility Multiplier.
Ranging strictness: Increase Range Threshold % to mark ranges more often; smooth the width to avoid choppiness.
 Example settings 
Swing trading:
Donchian Length: 50
Alpha: 0.25
Vol Length: 14
Vol Mult: 1.6
BB Length: 20, BB Mult: 2.0, Range Threshold %: 2.0, Smoothed width ON (20)
Intraday (more responsive):
Donchian Length: 20–30
Alpha: 0.4–0.6
Vol Length: 10–14
Vol Mult: 1.2–1.6
Range Threshold %: 1.5–2.5 depending on instrument
 Alerts (suggested) 
Regime flips:
Condition: close > dynTrail and close > kMid -> Alert: Bullish regime
Condition: close < dynTrail and close < kMid -> Alert: Bearish regime
Range state:
Condition: BB width% < threshold -> Alert: Ranging
You can wire these using alertcondition() on the flip conditions and isRange variable inside the script.
 Notes and limitations 
This is a single-side ratcheting trail per regime, designed to reduce whipsaw by requiring price to clear both the midpoint and the trail before flipping.
Like all trend tools, it can lag tops/bottoms and may chop in low-volatility, sideways markets.
For assets with highly irregular volatility, retune Volatility Multiplier and Range Threshold %.
Short description (for header):
Adaptive, single-line trailing stop based on Kalman-smoothed Donchian mid + ATR-style buffer. Colors candles by regime, grays out ranges via BB width. Optional price line and cloud.
If you want, I can add alertcondition() for the flip and range events and a light custom-candle overlay so you can publish with built-in alert templates and consistent candle styling.
Darvas Lines/Box1. Overview 
The Darvas Lines/Box (v1.0) is a dynamic trend following indicator based on the renowned method developed by Nicolas Darvas. It's designed to identify clear price consolidation ranges and detect decisive breakouts, crucial for positional and swing trading strategies.
This indicator automatically draws and adjusts the consolidation ranges, and includes modern enhancements such as Advanced Retest Confirmation and exposed alert conditions, providing reliable signals for monitoring and acting on trend continuations.
 2. Core Features 
Custom Display Mode (Lines/Box): Allows the user to toggle the visualization between showing just the Breakout Lines (Lines) or displaying the consolidation area with a filled background box (Box).
Source Selection (Wicks/Body): Users can choose whether the box boundaries are defined by the candlestick wicks (price extremes) or the candlestick body (open/close price). This feature is critical for adjusting sensitivity to market noise.
Dynamic Box Drawing: Draws Darvas boxes automatically by tracking price highs and lows based on user-defined parameters (Bars to Define Range, Max Box Height).
Retest Confirmation: Detects if the old resistance/support line functions effectively after a breakout. When a retest is confirmed, the line is extended and its color changes.
Price Labels (Stable Lock): Displays the highest and lowest box prices, fixed to the left outer edge of the box. This ensures stable visibility.
Progress Labels: Visualizes the current line price and the percentage distance to the closing price on the right side of the box, showing progress toward the next breakout.
 3. Trading Strategy: How to Use the Indicator 
This indicator is primarily used to identify trend initiation and trend continuation signals.
A. Entry Strategy (Breakout)
Long Entry Action: Consider taking a long entry when the price closes above the Upper Line (Green Line), signaled by a BULLISH BREAKOUT alert.
Signal: Use the BULLISH BREAKOUT alert.
Short Entry Action: Consider taking a short entry when the price closes below the Lower Line (Red Line), signaled by a BEARISH BREAKOUT alert.
Signal: Use the BEARISH BREAKOUT alert.
B. Retest Strategy (Add-on/Confirmation)
Action: When the price pulls back to touch the broken line (signaled by RETEST CONFIRMED), this confirms the break's validity.
Alert: The RETEST CONFIRMED alert is triggered at this moment.
C. Risk Management (General)
Stop Loss: The initial stop-loss is typically set just beyond the opposite side of the broken box. As the trend progresses and new boxes form, the lower boundary of the most recently formed box can be used as a trailing stop for managing risk.
 4. Setting Parameters 
Line Source (Wicks/Body): Crucial for sensitivity. 'Wicks' tracks price extremes; 'Body' tracks stronger close-to-close movements, ignoring noise.
Bars to Define Range: Defines the calculation period (in bars) for the box.
Cooldown Bars After Breakout: Sets the waiting period after a breakout before a new box can start forming.
Retest Lookback Bars (Phase 3): Sets the maximum number of bars to check for a retest during the cooldown phase.
Max Gap for Retest (%): Defines the maximum percentage distance from the line allowed to confirm a retest (Set to Zero (0.0%) for near-touch detection).
Alert Frequency (Breakout): Allows selection between Continuous and Once per Box for breakout signals.
 5. Alerts: How to Set Up the Triggers 
This indicator exposes several specific conditions to the TradingView alert panel, allowing you to select the exact event you want to monitor.
Step-by-Step Alert Setup:
Open the Alert Panel on the chart.
In the Condition field, select the indicator's name.
In the Alert Condition field, choose the specific event you want to monitor:
1. ANY DARVAS EVENT (Consolidated)
2. BULLISH BREAKOUT (Individual)
3. BEARISH BREAKOUT (Individual)
4. RETEST CONFIRMED (Individual)
In the Trigger field (Frequency), select your preferred native option (e.g., "Once Per Bar Close" or "Once per bar").
Dynamic S/R# Complete Parameter Guide
## 1. Lookback Bars (Default: 500)
- **Function**: Number of historical bars the script analyzes to identify levels
- **Example**: If set to 500, the script examines the last 500 candles
- **Increase when**: Trading long-term, searching for old historical levels
- **Decrease when**: Day trading or short-term trading, viewing only recent levels
- **Recommendation**: 200-300 for day trading, 500-1000 for swing trading
## 2. Min Touches (Default: 3)
- **Function**: Minimum number of touches required for a level to be considered valid
- **Example**: If set to 3, a level with only 2 touches will not be displayed
- **Increase (4-5) when**: You want only very strong and confirmed levels
- **Decrease (2) when**: You want to identify potential levels early
- **Recommendation**: 3 is a balanced value - not too loose, not too strict
## 3. Extrema Type (Default: both)
- **Function**: Which type of extrema to identify
- **Options**:
- **min**: Support levels only (pivot lows)
- **max**: Resistance levels only (pivot highs)
- **both**: Both types
- **When to change**:
- In uptrend looking for support only: select "min"
- In downtrend looking for resistance only: select "max"
## 4. Pivot Window (Default: 5)
- **Function**: How many bars on each side are required to confirm a pivot
- **Technical explanation**: pivot low = price lower than 5 bars before it and 5 bars after it
- **Increase (7-10) when**:
- More significant extrema needed
- Less noise, fewer levels
- Good for higher timeframes
- **Decrease (3-4) when**:
- More sensitivity needed
- More levels wanted
- Good for scalping
- **Important**: Higher value = quality over quantity
## 5. Clustering Sensitivity % (Default: 0.5%)
- **Function**: Percentage deviation allowed to group touches into the same level
- **Example**: If level at $100 and sensitivity 0.5%, touches between $99.5-$100.5 count as same level
- **Increase (1-2%) when**:
- Volatile assets (crypto, small stocks)
- More consolidation of nearby levels
- Fewer levels on chart
- **Decrease (0.2-0.3%) when**:
- Stable assets (indices, forex majors)
- Higher precision needed
- Separation between close levels
- **Recommendation**: Start at 0.5% and adjust per instrument
## 6. Max Levels to Show (Default: 10)
- **Function**: Maximum number of support/resistance lines displayed on chart
- **Selection criteria**: Script prioritizes levels by:
1. Number of touches (more = stronger)
2. Price spread (tighter = more accurate)
3. Recency (most recent touch closer to present)
- **Low value (5-10)**: Clean chart with only strongest levels
- **High value (20-50)**: More options, including weaker levels
## 7. Min Bar Separation (Default: 5)
- **Function**: Minimum distance in bars between two touches of the same type (min or max)
- **Why important**: Prevents double-counting the same extremum
- **Example**: If pivot low at bar 100 and another at bar 103, only one counts
- **Increase (10-20) when**:
- Lower timeframes with much noise
- Avoiding false consolidation
- **Decrease (2-3) when**:
- Higher timeframes
- Identifying quick movements
## 8. Alert Proximity % (Default: 1%)
- **Function**: Distance from level at which to trigger alert
- **Example**: Level at $100, proximity 1% = alert between $99-$101
- **Increase (2-3%) when**:
- Earlier alerts wanted
- More preparation time needed
- May create false alerts
- **Decrease (0.5%) when**:
- More precise alerts wanted
- Stronger confirmation needed
- Less reaction time
- **Recommendation**: 1% works well for most cases
## 9. Show Price Bands (Default: true)
- **Function**: Displays zone around level instead of just a line
- **Zone size**: Plus/minus Clustering Sensitivity %
- **Why useful**:
- Levels are never exact lines
- Zone better represents reality
- Helps identify entries and exits within zone
- **Off**: Cleaner chart with only lines
## 10. Show Info Table (Default: true)
- **Function**: Displays information table in chart corner
- **Table contents**:
- Type: S (Support) / R (Resistance) / N (Neutral)
- Price: Level price
- Touches: Number of touches
- Bars Ago: How many bars since last touch
- **Off**: If you know the levels and want a clean chart
## Recommended Settings by Trading Style:
### Day Trading (Intraday)
```
Lookback Bars: 200-300
Min Touches: 2-3
Pivot Window: 3-5
Sensitivity: 0.3-0.5%
Max Levels: 5-8
```
### Swing Trading (Days-Weeks)
```
Lookback Bars: 500-800
Min Touches: 3-4
Pivot Window: 5-7
Sensitivity: 0.5-1%
Max Levels: 10-15
```
### Position Trading (Months)
```
Lookback Bars: 1000-2000
Min Touches: 4-5
Pivot Window: 7-10
Sensitivity: 1-2%
Max Levels: 8-12
```
**Important tip**: Start with default values and adjust gradually based on the asset and results.
Pivot Regime Anchored VWAP [CHE]  Pivot Regime Anchored VWAP   — Detects body-based pivot regimes to classify swing highs and lows, anchoring volume-weighted average price lines directly at higher highs and lower lows for adaptive reference levels.
  Summary 
This indicator identifies shifts between top and bottom regimes through breakouts in candle body highs and lows, labeling swing points as higher highs, lower highs, lower lows, or higher lows. It then draws anchored volume-weighted average price lines starting from the most recent higher high and lower low, providing dynamic support and resistance that evolve with volume flow. These anchored lines differ from standard volume-weighted averages by resetting only at confirmed swing extremes, reducing noise in ranging markets while highlighting momentum shifts in trends.
  Motivation: Why this design? 
Traders often struggle with static reference lines that fail to adapt to changing market structures, leading to false breaks in volatile conditions or missed continuations in trends. By anchoring volume-weighted average price calculations to body pivot regimes—specifically at higher highs for resistance and lower lows for support—this design creates reference levels tied directly to price structure extremes. This approach addresses the problem of generic moving averages lagging behind swing confirmations, offering a more context-aware tool for intraday or swing trading.
  What’s different vs. standard approaches? 
- Baseline reference: Traditional volume-weighted average price indicators compute a running total from session start or fixed periods, often ignoring price structure.
- Architecture differences:
  - Regime detection via body breakout logic switches between high and low focus dynamically.
  - Anchoring limited to confirmed higher highs and lower lows, with historical recalculation for accurate line drawing.
  - Polyline rendering rebuilds only on the last bar to manage performance.
- Practical effect: Charts show fewer, more meaningful lines that start at swing points, making it easier to spot confluences with structure breaks rather than cluttered overlays from continuous calculations.
  How it works (technical) 
The indicator first calculates the maximum and minimum of each candle's open and close to define body highs and lows. It then scans a lookback window for the highest body high and lowest body low. A top regime triggers when the body high from the lookback period exceeds the window's highest, and a bottom regime when the body low falls below the window's lowest. These regime shifts confirm pivots only when crossing from one state to the other.
For top pivots, it compares the new body high against the previous swing high: if greater, it marks a higher high and anchors a new line; otherwise, a lower high. The same logic applies inversely for bottom pivots. Anchored lines use cumulative price-volume products and volumes from the anchor bar onward, subtracting prior cumulatives to isolate the segment. On pivot confirmation, it loops backward from the current bar to the anchor, computing and storing points for the line. New points append as bars advance, ensuring the line reflects ongoing volume weighting.
Initialization uses persistent variables to track the last swing values and anchor bars, starting with neutral states. Data flows from regime detection to pivot classification, then to anchoring and point accumulation, with lines rendered globally on the final bar.
  Parameter Guide 
Pivot Length — Controls the lookback window for detecting body breakouts, influencing pivot frequency and sensitivity to recent action. Shorter values catch more pivots in choppy conditions; longer smooths for major swings. Default: 30 (bars). Trade-offs/Tips: Min 1; for intraday, try 10–20 to reduce lag but watch for noise; on daily, 50+ for stability.
Show Pivot Labels — Toggles display of text markers at swing points, aiding quick identification of higher highs, lower highs, lower lows, or higher lows. Default: true. Trade-offs/Tips: Disable in multi-indicator setups to declutter; useful for backtesting structure.
HH Color — Sets the line and label color for higher high anchored lines, distinguishing resistance levels. Default: Red (solid). Trade-offs/Tips: Choose contrasting hues for dark/light themes; pair with opacity for fills if added later.
LL Color — Sets the line and label color for lower low anchored lines, distinguishing support levels. Default: Lime (solid). Trade-offs/Tips: As above; green shades work well for bullish contexts without overpowering candles.
  Reading & Interpretation 
Higher high labels and red lines indicate potential resistance zones where volume weighting begins at a new swing top, suggesting sellers may defend prior highs. Lower low labels and lime lines mark support from a fresh swing bottom, with the line's slope reflecting buyer commitment via volume. Lower highs or higher lows appear as labels without new anchors, signaling possible range-bound action. Line proximity to price shows overextension; crosses may hint at regime shifts, but confirm with volume spikes.
  Practical Workflows & Combinations 
- Trend following: Enter longs above a rising lower low anchored line after higher low confirmation; filter with rising higher highs for uptrends. Use line breaks as trailing stops.
- Exits/Stops: In downtrends, exit shorts below a higher high line; set aggressive stops above it for scalps, conservative below for swings. Pair with momentum oscillators for divergence.
- Multi-asset/Multi-TF: Defaults suit forex/stocks on 1H–4H; on crypto 15M, shorten length to 15. Scale colors for dark themes; combine with higher timeframe anchors for confluence.
  Behavior, Constraints & Performance 
Closed-bar logic ensures pivots confirm after the lookback period, with no repainting on historical bars—live bars may adjust until regime shift. No higher timeframe calls, so minimal repaint risk beyond standard delays. Resources include a 2000-bar history limit, label/polyline caps at 200/50, and loops for historical point filling (up to current bar count from anchor, typically under 500 iterations). Known limits: In extreme gaps or low-volume periods, anchors may skew; lines absent until first pivots.
  Sensible Defaults & Quick Tuning 
Start with the 30-bar length for balanced pivot detection across most assets. For too-frequent pivots in ranges, increase to 50 for fewer signals. If lines lag in trends, reduce to 20 and enable labels for visual cues. In low-volatility assets, widen color contrasts; test on 100-bar history to verify stability.
  What this indicator is—and isn’t 
This is a structure-aware visualization layer for anchoring volume-weighted references at swing extremes, enhancing manual analysis of regimes and levels. It is not a standalone signal generator or predictive model—always integrate with broader context like order flow or news. Use alongside risk management and position sizing, not as isolated buy/sell triggers.
Many thanks to LuxAlgo for the original script "McDonald's Pattern  ". The implementation for body pivots instead of wicks uses a = max(open, close), b = min(open, close) and then highest(a, length) / lowest(b, length). This filters noise from the wicks and detects breakouts over/under bodies. Unusual and targeted, super innovative.
  Disclaimer 
The content provided, including all code and materials, is strictly for educational and informational purposes only. It is not intended as, and should not be interpreted as, financial advice, a recommendation to buy or sell any financial instrument, or an offer of any financial product or service. All strategies, tools, and examples discussed are provided for illustrative purposes to demonstrate coding techniques and the functionality of Pine Script within a trading context.
Any results from strategies or tools provided are hypothetical, and past performance is not indicative of future results. Trading and investing involve high risk, including the potential loss of principal, and may not be suitable for all individuals. Before making any trading decisions, please consult with a qualified financial professional to understand the risks involved.
By using this script, you acknowledge and agree that any trading decisions are made solely at your discretion and risk.
Do not use this indicator on Heikin-Ashi, Renko, Kagi, Point-and-Figure, or Range charts, as these chart types can produce unrealistic results for signal markers and alerts.
 Best regards and happy trading
Chervolino
Trend Telescope v4  Basic Configuration
pine
// Enable only the components you need
Order Flow: ON
Delta Volume: ON  
Volume Profile: ON
Cumulative Delta: ON
Volatility Indicator: ON
Momentum Direction: ON
Volatility Compression: ON
📊 Component Breakdown
1. Order Flow Analysis
Purpose: Identifies buying vs selling pressure
Visual: Histogram (Green=Buying, Red=Selling)
Calculation: Volume weighted by price position
Usage: Spot institutional order blocks
2. Delta Volume Values
Purpose: Shows volume imbalance
Bull Volume (Green): Volume on up bars
Bear Volume (Red): Volume on down bars
Usage: Identify volume divergences
3. Anchored Volume Profile
Purpose: Finds high-volume price levels
POC (Point of Control): Price with highest volume
Profile Length: Adjustable (default: 50 bars)
Usage: Identify support/resistance zones
4. Cumulative Volume Delta
Purpose: Tracks net buying/selling pressure over time
Trend Analysis: Rising=Buying pressure, Falling=Selling pressure
Divergence Detection: Price vs Delta divergences
Usage: Confirm trend strength
5. Volatility Indicator
Purpose: Measures market volatility with cycle detection
Volatility Ratio: ATR as percentage of price
Volatility Cycle: SMA of volatility (identifies periods)
Histogram: Difference between current and average volatility
Usage: Adjust position sizing, identify breakout setups
6. Real-time Momentum Direction
Purpose: Multi-factor momentum assessment
Components: Price momentum (50%), RSI momentum (30%), Volume momentum (20%)
Visual: Line plot with color coding
Labels: Clear BULLISH/BEARISH/NEUTRAL signals
Usage: Trend confirmation, reversal detection
7. Volatility Compression Analysis
Purpose: Identifies low-volatility consolidation periods
Compression Detection: True Range below threshold
Strength Meter: How compressed the market is
Histogram: Red when compressed, Gray when normal
Usage: Predict explosive moves, prepare for breakouts
⚙️ Advanced Configuration
Optimal Settings for Different Timeframes
pine
// Scalping (1-15 min)
Profile Length: 20
ATR Period: 10
Momentum Length: 8
Compression Threshold: 0.3
// Day Trading (1H-4H)
Profile Length: 50
ATR Period: 14  
Momentum Length: 14
Compression Threshold: 0.5
// Swing Trading (Daily)
Profile Length: 100
ATR Period: 20
Momentum Length: 21
Compression Threshold: 0.7
Alert Setup Guide
Enable "Enable Alerts" in settings
Choose alert types:
Momentum Alerts: When momentum changes direction
Compression Alerts: When volatility compression begins
Set alert frequency to "Once Per Bar"
Configure notification preferences
🎯 Trading Strategies
Strategy 1: Compression Breakout
pine
Entry Conditions:
1. Volatility Compression shows RED histogram
2. Cumulative Delta trending upward
3. Momentum turns BULLISH
4. Price breaks above POC level
Exit: When Momentum turns BEARISH or Compression ends
Strategy 2: Momentum Reversal
pine
Entry Conditions:
1. Strong Order Flow in opposite direction
2. Momentum divergence (price makes new high/low but momentum doesn't)
3. Volume confirms the reversal
Exit: When Order Flow returns to trend direction
Strategy 3: Institutional Accumulation
pine
Identification:
1. High Cumulative Delta but flat/sideways price
2. Consistent Order Flow in one direction
3. Volume Profile shows accumulation at specific levels
Trade: Enter in direction of Order Flow when price breaks level
📈 Interpretation Guide
Bullish Signals
✅ Order Flow consistently green
✅ Cumulative Delta making higher highs
✅ Momentum above zero and rising
✅ Bull Volume > Bear Volume
✅ Price above POC level
Bearish Signals
✅ Order Flow consistently red
✅ Cumulative Delta making lower lows
✅ Momentum below zero and falling
✅ Bear Volume > Bull Volume
✅ Price below POC level
Caution Signals
⚠️ Momentum divergence (price vs indicator)
⚠️ Volatility compression (potential big move coming)
⚠️ Mixed signals across components
🔧 Troubleshooting
Common Issues & Solutions
Problem: Indicators not showing
Solution: Check "Show on Chart" is enabled
Problem: Alerts not triggering
Solution: Verify alert is enabled in both script and TradingView alert panel
Problem: Performance issues
Solution: Reduce number of enabled components or increase timeframe
Problem: Volume Profile not updating
Solution: Adjust Profile Length setting, ensure sufficient historical data
Performance Optimization
Disable unused components
Increase chart timeframe
Reduce historical bar count
Use on lower timeframes with fewer indicators enabled
💡 Pro Tips
Risk Management
Use Volatility Indicator for position sizing
Monitor Cumulative Delta for trend confirmation
Use POC levels for stop-loss placement
Multi-Timeframe Analysis
Use higher timeframe for trend direction
Use current timeframe for entry timing
Correlate signals across timeframes
Market Condition Adaptation
Trending Markets: Focus on Momentum + Order Flow
Ranging Markets: Focus on Volume Profile + Compression
High Volatility: Use smaller position sizes
Low Volatility: Prepare for compression breakouts
📚 Educational Resources
Key Concepts to Master
Volume-price relationships
Market microstructure
Institutional order flow
Volatility regimes
Momentum vs mean reversion
Recommended Learning Path
Start with Order Flow + Momentum only
Add Volume Profile once comfortable
Incorporate Volatility analysis
Master multi-component correlation
🆘 Support
Getting Help
Check component toggles are enabled
Verify sufficient historical data is loaded
Test on major pairs/indices first
Adjust settings for your trading style
Continuous Improvement
Backtest strategies thoroughly
Keep a trading journal
Adjust parameters based on market conditions
Combine with price action analysis
Remember: No indicator is perfect. Use this tool as part of a comprehensive trading plan with proper risk management. Always test strategies in demo accounts before live trading.
Happy Trading! 📈
Historical Matrix Analyzer [PhenLabs]📊Historical Matrix Analyzer  
 Version:  PineScriptv6
 📌Description 
The Historical Matrix Analyzer is an advanced probabilistic trading tool that transforms technical analysis into a data-driven decision support system. By creating a comprehensive 56-cell matrix that tracks every combination of RSI states and multi-indicator conditions, this indicator reveals which market patterns have historically led to profitable outcomes and which have not.
At its core, the indicator continuously monitors seven distinct RSI states (ranging from Extreme Oversold to Extreme Overbought) and eight unique indicator combinations (MACD direction, volume levels, and price momentum). For each of these 56 possible market states, the system calculates average forward returns, win rates, and occurrence counts based on your configurable lookback period. The result is a color-coded probability matrix that shows you exactly where you stand in the historical performance landscape.
The standout feature is the Current State Panel, which provides instant clarity on your active market conditions. This panel displays signal strength classifications (from Strong Bullish to Strong Bearish), the average return percentage for similar past occurrences, an estimated win rate using Bayesian smoothing to prevent small-sample distortions, and a confidence level indicator that warns you when insufficient data exists for reliable conclusions.
 🚀Points of Innovation 
 
 Multi-dimensional state classification combining 7 RSI levels with 8 indicator combinations for 56 unique trackable market conditions
 Bayesian win rate estimation with adjustable smoothing strength to provide stable probability estimates even with limited historical samples
 Real-time active cell highlighting with “NOW” marker that visually connects current market conditions to their historical performance data
 Configurable color intensity sensitivity allowing traders to adjust heat-map responsiveness from conservative to aggressive visual feedback
 Dual-panel display system separating the comprehensive statistics matrix from an easy-to-read current state summary panel
 Intelligent confidence scoring that automatically warns traders when occurrence counts fall below reliable thresholds
 
 🔧Core Components 
 
 RSI State Classification:  Segments RSI readings into 7 distinct zones (Extreme Oversold <20, Oversold 20-30, Weak 30-40, Neutral 40-60, Strong 60-70, Overbought 70-80, Extreme Overbought >80) to capture momentum extremes and transitions
 Multi-Indicator Condition Tracking:  Simultaneously monitors MACD crossover status (bullish/bearish), volume relative to moving average (high/low), and price direction (rising/falling) creating 8 binary-encoded combinations
 Historical Data Storage Arrays:  Maintains rolling lookback windows storing RSI states, indicator states, prices, and bar indices for precise forward-return calculations
 Forward Performance Calculator:  Measures price changes over configurable forward bar periods (1-20 bars) from each historical state, accumulating total returns and win counts per matrix cell
 Bayesian Smoothing Engine:  Applies statistical prior assumptions (default 50% win rate) weighted by user-defined strength parameter to stabilize estimated win rates when sample sizes are small
 Dynamic Color Mapping System:  Converts average returns into color-coded heat map with intensity adjusted by sensitivity parameter and transparency modified by confidence levels
 
 🔥Key Features 
 
 56-Cell Probability Matrix:  Comprehensive grid displaying every possible combination of RSI state and indicator condition, with each cell showing average return percentage, estimated win rate, and occurrence count for complete statistical visibility
 Current State Info Panel:  Dedicated display showing your exact position in the matrix with signal strength emoji indicators, numerical statistics, and color-coded confidence warnings for immediate situational awareness
 Customizable Lookback Period:  Adjustable historical window from 50 to 500 bars allowing traders to focus on recent market behavior or capture longer-term pattern stability across different market cycles
 Configurable Forward Performance Window:  Select target holding periods from 1 to 20 bars ahead to align probability calculations with your trading timeframe, whether day trading or swing trading
 Visual Heat Mapping:  Color-coded cells transition from red (bearish historical performance) through gray (neutral) to green (bullish performance) with intensity reflecting statistical significance and occurrence frequency
 Intelligent Data Filtering:  Minimum occurrence threshold (1-10) removes unreliable patterns with insufficient historical samples, displaying gray warning colors for low-confidence cells
 Flexible Layout Options:  Independent positioning of statistics matrix and info panel to any screen corner, accommodating different chart layouts and personal preferences
 Tooltip Details:  Hover over any matrix cell to see full RSI label, complete indicator status description, precise average return, estimated win rate, and total occurrence count
 
 🎨Visualization 
 
 Statistics Matrix Table:  A 9-column by 8-row grid with RSI states labeling vertical axis and indicator combinations on horizontal axis, using compact abbreviations (XOverS, OverB, MACD↑, Vol↓, P↑) for space efficiency
 Active Cell Indicator:  The current market state cell displays “⦿ NOW ⦿” in yellow text with enhanced color saturation to immediately draw attention to relevant historical performance
 Signal Strength Visualization:  Info panel uses emoji indicators (🔥 Strong Bullish, ✅ Bullish, ↗️ Weak Bullish, ➖ Neutral, ↘️ Weak Bearish, ⛔ Bearish, ❄️ Strong Bearish, ⚠️ Insufficient Data) for rapid interpretation
 Histogram Plot:  Below the price chart, a green/red histogram displays the current cell’s average return percentage, providing a time-series view of how historical performance changes as market conditions evolve
 Color Intensity Scaling:  Cell background transparency and saturation dynamically adjust based on both the magnitude of average returns and the occurrence count, ensuring visual emphasis on reliable patterns
 Confidence Level Display:  Info panel bottom row shows “High Confidence” (green), “Medium Confidence” (orange), or “Low Confidence” (red) based on occurrence counts relative to minimum threshold multipliers
 
 📖Usage Guidelines 
 RSI Period 
 
 Default: 14
 Range: 1 to unlimited
 Description: Controls the lookback period for RSI momentum calculation. Standard 14-period provides widely-recognized overbought/oversold levels. Decrease for faster, more sensitive RSI reactions suitable for scalping. Increase (21, 28) for smoother, longer-term momentum assessment in swing trading. Changes affect how quickly the indicator moves between the 7 RSI state classifications.
 
 MACD Fast Length 
 
 Default: 12
 Range: 1 to unlimited
 Description: Sets the faster exponential moving average for MACD calculation. Standard 12-period setting works well for daily charts and captures short-term momentum shifts. Decreasing creates more responsive MACD crossovers but increases false signals. Increasing smooths out noise but delays signal generation, affecting the bullish/bearish indicator state classification.
 
 MACD Slow Length 
 
 Default: 26
 Range: 1 to unlimited
 Description: Defines the slower exponential moving average for MACD calculation. Traditional 26-period setting balances trend identification with responsiveness. Must be greater than Fast Length. Wider spread between fast and slow increases MACD sensitivity to trend changes, impacting the frequency of indicator state transitions in the matrix.
 
 MACD Signal Length 
 
 Default: 9
 Range: 1 to unlimited
 Description: Smoothing period for the MACD signal line that triggers bullish/bearish state changes. Standard 9-period provides reliable crossover signals. Shorter values create more frequent state changes and earlier signals but with more whipsaws. Longer values produce more confirmed, stable signals but with increased lag in detecting momentum shifts.
 
 Volume MA Period 
 
 Default: 20
 Range: 1 to unlimited
 Description: Lookback period for volume moving average used to classify volume as “high” or “low” in indicator state combinations. 20-period default captures typical monthly trading patterns. Shorter periods (10-15) make volume classification more reactive to recent spikes. Longer periods (30-50) require more sustained volume changes to trigger state classification shifts.
 
 Statistics Lookback Period 
 
 Default: 200
 Range: 50 to 500
 Description: Number of historical bars used to calculate matrix statistics. 200 bars provides substantial data for reliable patterns while remaining responsive to regime changes. Lower values (50-100) emphasize recent market behavior and adapt quickly but may produce volatile statistics. Higher values (300-500) capture long-term patterns with stable statistics but slower adaptation to changing market dynamics.
 
 Forward Performance Bars 
 
 Default: 5
 Range: 1 to 20
 Description: Number of bars ahead used to calculate forward returns from each historical state occurrence. 5-bar default suits intraday to short-term swing trading (5 hours on hourly charts, 1 week on daily charts). Lower values (1-3) target short-term momentum trades. Higher values (10-20) align with position trading and longer-term pattern exploitation.
 
 Color Intensity Sensitivity 
 
 Default: 2.0
 Range: 0.5 to 5.0, step 0.5
 Description: Amplifies or dampens the color intensity response to average return magnitudes in the matrix heat map. 2.0 default provides balanced visual emphasis. Lower values (0.5-1.0) create subtle coloring requiring larger returns for full saturation, useful for volatile instruments. Higher values (3.0-5.0) produce vivid colors from smaller returns, highlighting subtle edges in range-bound markets.
 
 Minimum Occurrences for Coloring 
 
 Default: 3
 Range: 1 to 10
 Description: Required minimum sample size before applying color-coded performance to matrix cells. Cells with fewer occurrences display gray “insufficient data” warning. 3-occurrence default filters out rare patterns. Lower threshold (1-2) shows more data but includes unreliable single-event statistics. Higher thresholds (5-10) ensure only well-established patterns receive visual emphasis.
 
 Table Position 
 
 Default: top_right
 Options: top_left, top_right, bottom_left, bottom_right
 Description: Screen location for the 56-cell statistics matrix table. Position to avoid overlapping critical price action or other indicators on your chart. Consider chart orientation and candlestick density when selecting optimal placement.
 
 Show Current State Panel 
 
 Default: true
 Options: true, false
 Description: Toggle visibility of the dedicated current state information panel. When enabled, displays signal strength, RSI value, indicator status, average return, estimated win rate, and confidence level for active market conditions. Disable to declutter charts when only the matrix table is needed.
 
 Info Panel Position 
 
 Default: bottom_left
 Options: top_left, top_right, bottom_left, bottom_right
 Description: Screen location for the current state information panel (when enabled). Position independently from statistics matrix to optimize chart real estate. Typically placed opposite the matrix table for balanced visual layout.
 
 Win Rate Smoothing Strength 
 
 Default: 5
 Range: 1 to 20
 Description: Controls Bayesian prior weighting for estimated win rate calculations. Acts as virtual sample size assuming 50% win rate baseline. Default 5 provides moderate smoothing preventing extreme win rate estimates from small samples. Lower values (1-3) reduce smoothing effect, allowing win rates to reflect raw data more directly. Higher values (10-20) increase conservatism, pulling win rate estimates toward 50% until substantial evidence accumulates.
 
 ✅Best Use Cases 
 
 Pattern-based discretionary trading where you want historical confirmation before entering setups that “look good” based on current technical alignment
 Swing trading with holding periods matching your forward performance bar setting, using high-confidence bullish cells as entry filters
 Risk assessment and position sizing, allocating larger size to trades originating from cells with strong positive average returns and high estimated win rates
 Market regime identification by observing which RSI states and indicator combinations are currently producing the most reliable historical patterns
 Backtesting validation by comparing your manual strategy signals against the historical performance of the corresponding matrix cells
 Educational tool for developing intuition about which technical condition combinations have actually worked versus those that feel right but lack historical evidence
 
 ⚠️Limitations 
 
 Historical patterns do not guarantee future performance, especially during unprecedented market events or regime changes not represented in the lookback period
 Small sample sizes (low occurrence counts) produce unreliable statistics despite Bayesian smoothing, requiring caution when acting on low-confidence cells
 Matrix statistics lag behind rapidly changing market conditions, as the lookback period must accumulate new state occurrences before updating performance data
 Forward return calculations use fixed bar periods that may not align with actual trade exit timing, support/resistance levels, or volatility-adjusted profit targets
 
 💡What Makes This Unique 
 
 Multi-Dimensional State Space:  Unlike single-indicator tools, simultaneously tracks 56 distinct market condition combinations providing granular pattern resolution unavailable in traditional technical analysis
 Bayesian Statistical Rigor:  Implements proper probabilistic smoothing to prevent overconfidence from limited data, a critical feature missing from most pattern recognition tools
 Real-Time Contextual Feedback:  The “NOW” marker and dedicated info panel instantly connect current market conditions to their historical performance profile, eliminating guesswork
 Transparent Occurrence Counts:  Displays sample sizes directly in each cell, allowing traders to judge statistical reliability themselves rather than hiding data quality issues
 Fully Customizable Analysis Window:  Complete control over lookback depth and forward return horizons lets traders align the tool precisely with their trading timeframe and strategy requirements
 
 🔬How It Works 
 1. State Classification and Encoding 
 
 Each bar’s RSI value is evaluated and assigned to one of 7 discrete states based on threshold levels (0: <20, 1: 20-30, 2: 30-40, 3: 40-60, 4: 60-70, 5: 70-80, 6: >80)
 Simultaneously, three binary conditions are evaluated: MACD line position relative to signal line, current volume relative to its moving average, and current close relative to previous close
 These three binary conditions are combined into a single indicator state integer (0-7) using binary encoding, creating 8 possible indicator combinations
 The RSI state and indicator state are stored together, defining one of 56 possible market condition cells in the matrix
 
 2. Historical Data Accumulation 
 
 As each bar completes, the current state classification, closing price, and bar index are stored in rolling arrays maintained at the size specified by the lookback period
 When the arrays reach capacity, the oldest data point is removed and the newest added, creating a sliding historical window
 This continuous process builds a comprehensive database of past market conditions and their subsequent price movements
 
 3. Forward Return Calculation and Statistics Update 
 
 On each bar, the indicator looks back through the stored historical data to find bars where sufficient forward bars exist to measure outcomes
 For each historical occurrence, the price change from that bar to the bar N periods ahead (where N is the forward performance bars setting) is calculated as a percentage return
 This percentage return is added to the cumulative return total for the specific matrix cell corresponding to that historical bar’s state classification
 Occurrence counts are incremented, and wins are tallied for positive returns, building comprehensive statistics for each of the 56 cells
 The Bayesian smoothing formula combines these raw statistics with prior assumptions (neutral 50% win rate) weighted by the smoothing strength parameter to produce estimated win rates that remain stable even with small samples
 
 💡Note: 
The Historical Matrix Analyzer is designed as a decision support tool, not a standalone trading system. Best results come from using it to validate discretionary trade ideas or filter systematic strategy signals. Always combine matrix insights with proper risk management, position sizing rules, and awareness of broader market context. The estimated win rate feature uses Bayesian statistics specifically to prevent false confidence from limited data, but no amount of smoothing can create reliable predictions from fundamentally insufficient sample sizes. Focus on high-confidence cells (green-colored confidence indicators) with occurrence counts well above your minimum threshold for the most actionable insights.
ORBs, EMAs, SMAs, AVWAPThis is an update to a previously published script. In short the difference is the added capability to adjust the length of EMAs. Also added 3 customizable SMAs. Enjoy! Let me know what you think of the script please. This is only second one I have ever done. Through practice and people like @LuxAlgo and other Pinescripters this isn't possible. Tedious hrs with ChatGPT to correct nuances, who doesnt seem to learn from (insert pronoun) mistakes
This all-in-one indicator combines key institutional tools into a unified framework for intraday and swing trading. Designed for traders who use multi-session analysis and dynamic levels, it automatically maps out global session breakouts, moving averages, and volume-weighted anchors with high clarity.
Features include:
🕓 Tokyo, London, and New York ORBs (Opening Range Breakouts) — 30-minute configurable range boxes that persist until the next New York open.
📈 Anchored VWAP with Standard Deviation Bands — dynamically anchorable to session, week, or month for institutional-grade price tracking.
📊 Exponential Moving Averages (9, 20, 113, 200) — for short-, mid-, and long-term momentum structure.
📉 Simple Moving Averages (20, 50, 100) — fully customizable lengths, colors, and visibility toggles for trend confirmation.
🏁 Prior High/Low Levels (PDH/PDL, PWH/PWL, PMH/PML) — automatically plotted from previous day, week, and month, with labels placed at each session’s midpoint.
🎛️ Session-Aligned Time Logic — all time calculations use New York session anchors with DST awareness.
💡 Clean Visualization Options — every component can be toggled on/off, recolored, or customized for your workflow.
Best used for:
ORB break-and-retest setups
VWAP and EMA rejections
Confluence-based trading around key session levels
Multi-session momentum tracking
Luxy Adaptive MA Cloud - Trend Strength & Signal Tracker V2Luxy Adaptive MA Cloud  - Professional Trend Strength & Signal Tracker
Next-generation moving average cloud indicator combining ultra-smooth gradient visualization with intelligent momentum detection. Built for traders who demand clarity, precision, and actionable insights.
 ═══════════════════════════════════════════════ 
  WHAT MAKES THIS INDICATOR SPECIAL? 
 ═══════════════════════════════════════════════ 
Unlike traditional MA indicators that show static lines, Luxy Adaptive MA Cloud creates a  living, breathing visualization  of market momentum. Here's what sets it apart:
 
 Exponential Gradient Technology 
This isn't just a simple fill between two lines. It's a professionally engineered gradient system with 26 precision layers using exponential density distribution. The result? An organic, cloud-like appearance where the center is dramatically darker (15% transparency - where crossovers and price action occur), while edges fade gracefully (75% transparency). Think of it as a visual "heat map" of trend strength.
  Dynamic Momentum Intelligence 
Most MA clouds only show  structure  (which MA is on top). This indicator shows  momentum strength  in real-time through four intelligent states:
- 🟢  Bright Green  = Explosive bullish momentum (both MAs rising strongly)
- 🔵  Blue  = Weakening bullish (structure intact, but momentum fading)
- 🟠  Orange  = Caution zone (bearish structure forming, weak momentum)
- 🔴  Deep Red  = Strong bearish momentum (both MAs falling)
The cloud literally  tells you  when trends are accelerating or losing steam.
  Conditional Performance Architecture 
Every calculation is optimized for speed. Disable a feature? It stops calculating entirely—not just hidden, but  not computed . The 26-layer gradient only renders when enabled. Toggle signals off? Those crossover checks don't run. This makes it one of the most efficient cloud indicators available, even with its advanced visual system.
  Zero Repaint Guarantee 
All signals and momentum states are based on  confirmed bar data only . What you see in historical data is  exactly  what you would have seen trading live. No lookahead bias. No repainting tricks. No signals that "magically" appear perfect in hindsight. If a signal shows in history, it would have triggered in real-time at that exact moment.
  Educational by Design 
Every single input includes comprehensive tooltips with:
- Clear explanations of what each parameter does
- Practical examples of when to use different settings
- Recommended configurations for scalping, day trading, and swing trading
- Real-world trading impact ("This affects entry timing" vs "This is visual only")
You're not just getting an indicator—you're learning  how to use it effectively .
 
  
 ═══════════════════════════════════════════════ 
  THE GRADIENT CLOUD - TECHNICAL DETAILS 
 ═══════════════════════════════════════════════ 
 Architecture: 
 
 26 precision layers  for silk-smooth transitions
 Exponential density curve  - layers packed tightly near center (where crossovers happen), spread wider at edges
 75%-15% transparency range  - center is highly opaque (15%), edges fade gracefully (75%)
 V-Gradient design  - emphasizes the action zone between Fast and Medium MAs
 
 The Four Momentum States: 
🟢  GREEN - Strong Bullish 
 
 Fast MA above Medium MA
 Both MAs rising with momentum > 0.02%
 Action: Enter/hold LONG positions, strong uptrend confirmed
 
🔵  BLUE - Weak Bullish 
 
 Fast MA above Medium MA
 Weak or flat momentum
 Action: Caution - bullish structure but losing strength, consider trailing stops
 
🟠  ORANGE - Weak Bearish 
 
 Medium MA above Fast MA
 Weak or flat momentum  
 Action: Warning - bearish structure developing, consider exits
 
🔴  RED - Strong Bearish 
 
 Medium MA above Fast MA
 Both MAs falling with momentum < -0.02%
 Action: Enter/hold SHORT positions, strong downtrend confirmed
 
 Smooth Transitions:  The momentum score is smoothed using an 8-bar EMA to eliminate noise and prevent whipsaws. You see the  true trend , not every minor fluctuation.
  
 ═══════════════════════════════════════════════ 
  FLEXIBLE MOVING AVERAGE SYSTEM 
 ═══════════════════════════════════════════════ 
 Three Customizable MAs: 
 
 Fast MA  (default: EMA 10) - Reacts quickly to price changes, defines short-term momentum
 Medium MA  (default: EMA 20) - Balances responsiveness with stability, core trend reference
 Slow MA  (default: SMA 200, optional) - Long-term trend filter, major support/resistance
 
 Six MA Types Available: 
 
 EMA  - Exponential; faster response, ideal for momentum and day trading
 SMA  - Simple; smooth and stable, best for swing trading and trend following
 WMA  - Weighted; middle ground between EMA and SMA
 VWMA  - Volume-weighted; reflects market participation, useful for liquid markets
 RMA  - Wilder's smoothing; used in RSI/ADX, excellent for trend filters
 HMA  - Hull; extremely responsive with minimal lag, aggressive option
 
 Recommended Settings by Trading Style: 
 Scalping (1m-5m): 
 
Fast: EMA(5-8)
Medium: EMA(10-15)
Slow: Not needed or EMA(50)
 
 Day Trading (5m-1h): 
 
Fast: EMA(10-12)
Medium: EMA(20-21)
Slow: SMA(200) for bias
 
 Swing Trading (4h-1D): 
 
Fast: EMA(10-20)
Medium: EMA(34-50)
Slow: SMA(200)
 
 Pro Tip:  Start with Fast < Medium < Slow lengths. The gradient works best when there's clear separation between Fast and Medium MAs.
  
 ═══════════════════════════════════════════════ 
  CROSSOVER SIGNALS - CLEAN & RELIABLE 
 ═══════════════════════════════════════════════ 
 Golden Cross  ⬆  LONG Signal 
 
 Fast MA crosses  above  Medium MA
 Classic bullish reversal or trend continuation signal
 Most reliable when accompanied by GREEN cloud (strong momentum)
 
 Death Cross  ⬇  SHORT Signal 
 
 Fast MA crosses  below  Medium MA  
 Classic bearish reversal or trend continuation signal
 Most reliable when accompanied by RED cloud (strong momentum)
 
 Signal Intelligence: 
 
 Anti-spam filter  - Minimum 5 bars between signals prevents noise
 Clean labels  - Placed precisely at crossover points
 Alert-ready  - Built-in ALERTS for automated trading systems
 No repainting  - Signals based on confirmed bars only
 
 Signal Quality Assessment: 
 High-Quality Entry: 
 
Golden Cross + GREEN cloud + Price above both MAs
= Strong bullish setup ✓
 
 Low-Quality Entry (skip or wait): 
 
Golden Cross + ORANGE cloud + Choppy price action
= Weak bullish setup, likely whipsaw ✗
 
  
 ═══════════════════════════════════════════════ 
  REAL-TIME INFO PANEL 
 ═══════════════════════════════════════════════ 
An at-a-glance dashboard showing:
 Trend Strength Indicator: 
 
 Visual display of current momentum state
 Color-coded header matching cloud color
 Instant recognition of market bias
 
 MA Distance Table: 
Shows percentage distance of price from each enabled MA:
 
 Green rows : Price ABOVE MA (bullish)
 Red rows : Price BELOW MA (bearish)
 Gray rows : Price AT MA (rare, decision point)
 
 Distance Interpretation: 
 
+2% to +5%: Healthy uptrend
+5% to +10%: Getting extended, caution
+10%+: Overextended, expect pullback
-2% to -5%: Testing support
-5% to -10%: Oversold zone
-10%+: Deep correction or downtrend
 
 Customization: 
 
 4 corner positions
 5 font sizes (Tiny to Huge)
 Toggle visibility on/off
 
 ═══════════════════════════════════════════════ 
  HOW TO USE - PRACTICAL TRADING GUIDE 
 ═══════════════════════════════════════════════ 
 STRATEGY 1: Trend Following 
 
 Identify trend : Wait for GREEN (bullish) or RED (bearish) cloud
 Enter on signal : Golden Cross in GREEN cloud = LONG, Death Cross in RED cloud = SHORT
 Hold position : While cloud maintains color
 Exit signals :
   • Cloud turns ORANGE/BLUE = momentum weakening, tighten stops
   • Opposite crossover = close position
   • Cloud turns opposite color = full reversal
 
 STRATEGY 2: Pullback Entries 
 
 Confirm trend : GREEN cloud established (bullish bias)
 Wait for pullback : Price touches or crosses below Fast MA
 Enter when : Price rebounds back above Fast MA with cloud still GREEN
 Stop loss : Below Medium MA or recent swing low
 Target : Previous high or when cloud weakens
 
 STRATEGY 3: Momentum Confirmation 
 
 Your setup triggers : (e.g., chart pattern, support/resistance)
 Check cloud color :
   • GREEN = proceed with LONG
   • RED = proceed with SHORT  
   • BLUE/ORANGE = skip or reduce size
 Use gradient as confluence : Not as primary signal, but as momentum filter
 
 Risk Management Tips: 
 
 Never enter against the cloud color (don't LONG in RED cloud)
 Reduce position size during BLUE/ORANGE (transition periods)
 Place stops beyond Medium MA for swing trades
 Use Slow MA (200) as final trend filter - don't SHORT above it in uptrends
 
  
 ═══════════════════════════════════════════════ 
  PERFORMANCE & OPTIMIZATION 
 ═══════════════════════════════════════════════ 
 Tested On: 
 
 Crypto: BTC, ETH, major altcoins
 Stocks: SPY, AAPL, TSLA, QQQ
 Forex: EUR/USD, GBP/USD, USD/JPY
 Indices: S&P 500, NASDAQ, DJI
 
 ═══════════════════════════════════════════════ 
  TRANSPARENCY & RELIABILITY 
 ═══════════════════════════════════════════════ 
 Educational Focus: 
 
 Detailed tooltips on every input
 Clear documentation of methodology
 Practical examples in descriptions
 Teaches you  why , not just  what 
 
 Open Logic: 
 
 Momentum calculation: (Fast slope + Medium slope) / 2
 Smoothing: 8-bar EMA to reduce noise
 Thresholds: ±0.02% for strong momentum classification
 Everything is transparent and explainable
 
 ═══════════════════════════════════════════════ 
  COMPLETE FEATURE LIST 
 ═══════════════════════════════════════════════ 
 Visual Components: 
 
 26-layer exponential gradient cloud
 3 customizable moving average lines
 Golden Cross / Death Cross labels
 Real-time info panel with trend strength
 MA distance table
 
 Calculation Features: 
 
 6 MA types (EMA, SMA, WMA, VWMA, RMA, HMA)
 Momentum-based cloud coloring
 Smoothed trend strength scoring
 Conditional performance optimization
 
 Customization Options: 
 
 All MA lengths adjustable
 All colors customizable (when gradient disabled)
 Panel position (4 corners)
 Font sizes (5 options)
 Toggle any feature on/off
 
 Signal Features: 
 
 Anti-spam filter (configurable gap)
 Clean, non-overlapping labels
 Built-in alert conditions
 No repainting guarantee
 
 ═══════════════════════════════════════════════ 
  IMPORTANT DISCLAIMERS 
 ═══════════════════════════════════════════════ 
 
 This indicator is for  educational and informational purposes only 
 Not financial advice - always do your own research
 Past performance does not guarantee future results
 Use proper risk management - never risk more than you can afford to lose
 Test on paper/demo accounts before using with real money
 Combine with other analysis methods - no single indicator is perfect
 Works best in trending markets; less effective in choppy/sideways conditions
 Signals may perform differently in different timeframes and market conditions
 The indicator uses historical data for MA calculations - allow sufficient lookback period
 
 ═══════════════════════════════════════════════ 
  CREDITS & TECHNICAL INFO 
 ═══════════════════════════════════════════════ 
 Version:  2.0
 Release:  October 2025
 Special Thanks: 
 
 TradingView community for feedback and testing
 Pine Script documentation for technical reference
 
 ═══════════════════════════════════════════════ 
  SUPPORT & UPDATES 
 ═══════════════════════════════════════════════ 
 Found a bug?  Comment below with:
 
 Ticker symbol
 Timeframe
 Screenshot if possible
 Steps to reproduce
 
 Feature requests?  I'm always looking to improve! Share your ideas in the comments.
 Questions?  Check the tooltips first (hover over any input) - most answers are there. If still stuck, ask in comments.
 ═══════════════════════════════════════════════ 
 Happy Trading!  
Remember: The best indicator is the one you understand and use consistently. Take time to learn how the cloud behaves in different market conditions. Practice on paper before going live. Trade smart, manage risk, and may the trends be with you! 🚀






















